IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v10y2001i1d10.1007_bf02511641.html
   My bibliography  Save this article

Fiducial inference in combining expert judgements

Author

Listed:
  • Paola Monari

    (University of Bologna)

  • Patrizia Agati

    (University of Bologna)

Abstract

In the expert use problem, hierarchical models provide an ideal perspective for classifying understanding and generalising the aggregative algoithms suitable to compose experts' opinions in a single synthesis distribution. After suggesting to look at Peter A. Morris' (1971, 1974, 1977) Bayesian model in such a light, this paper addresses the problem of modelling the multidimensional ‘performance function’, which encodes aggregator's beliefs about each expert's assessment ability and the degree of dependence among the experts. Whenever the aggregator has not an empirically founded probability distribution for the experts' performances, the proposed fiducial procedure provides a rational and very flexible tool for enabling the performance function to be specified with a relatively small number of assessments: moreover, it warrants aggregator's beliefs about the experts in terms of personal long run frequencies.

Suggested Citation

  • Paola Monari & Patrizia Agati, 2001. "Fiducial inference in combining expert judgements," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 81-97, January.
  • Handle: RePEc:spr:stmapp:v:10:y:2001:i:1:d:10.1007_bf02511641
    DOI: 10.1007/BF02511641
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02511641
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02511641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    2. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    3. Dennis Lindley, 1983. "Reconciliation of Probability Distributions," Operations Research, INFORMS, vol. 31(5), pages 866-880, October.
    4. Robert L. Winkler & Robert T. Clemen, 1992. "Sensitivity of Weights in Combining Forecasts," Operations Research, INFORMS, vol. 40(3), pages 609-614, June.
    5. Peter A. Morris, 1983. "An Axiomatic Approach to Expert Resolution," Management Science, INFORMS, vol. 29(1), pages 24-32, January.
    6. Peter A. Morris, 1974. "Decision Analysis Expert Use," Management Science, INFORMS, vol. 20(9), pages 1233-1241, May.
    7. Robert T. Clemen & Robert L. Winkler, 1990. "Unanimity and Compromise Among Probability Forecasters," Management Science, INFORMS, vol. 36(7), pages 767-779, July.
    8. Dennis V. Lindley, 1986. "Another Look at an Axiomatic Approach to Expert Resolution," Management Science, INFORMS, vol. 32(3), pages 303-306, March.
    9. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    10. S. French, 1986. "Calibration and the Expert Problem," Management Science, INFORMS, vol. 32(3), pages 315-321, March.
    11. Robert T. Clemen & Robert L. Winkler, 1993. "Aggregating Point Estimates: A Flexible Modeling Approach," Management Science, INFORMS, vol. 39(4), pages 501-515, April.
    12. Robert T. Clemen, 1986. "Calibration and the Aggregation of Probabilities," Management Science, INFORMS, vol. 32(3), pages 312-314, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James E. Smith & Detlof von Winterfeldt, 2004. "Anniversary Article: Decision Analysis in Management Science," Management Science, INFORMS, vol. 50(5), pages 561-574, May.
    2. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    3. Jason R. W. Merrick & J. Rene van Dorp & Amita Singh, 2005. "Analysis of Correlated Expert Judgments from Extended Pairwise Comparisons," Decision Analysis, INFORMS, vol. 2(1), pages 17-29, March.
    4. Weyant John, 2014. "Integrated assessment of climate change: state of the literature," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 377-409, December.
    5. Mehrez, A. & Yuan, Y. & Gafni, A., 1995. "The search for information -- A patient perspective on multiple opinions," European Journal of Operational Research, Elsevier, vol. 85(2), pages 244-262, September.
    6. Wang, W., 1997. "Subjective estimation of the delay time distribution in maintenance modelling," European Journal of Operational Research, Elsevier, vol. 99(3), pages 516-529, June.
    7. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    8. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    9. James Taylor & Derek Bunn, 1998. "Combining forecast quantiles using quantile regression: Investigating the derived weights, estimator bias and imposing constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 193-206.
    10. Ali E. Abbas, 2009. "A Kullback-Leibler View of Linear and Log-Linear Pools," Decision Analysis, INFORMS, vol. 6(1), pages 25-37, March.
    11. Joseph Lipscomb & Giovanni Parmigiani & Vic Hasselblad, 1998. "Combining Expert Judgment by Hierarchical Modeling: An Application to Physician Staffing," Management Science, INFORMS, vol. 44(2), pages 149-161, February.
    12. Anil Gaba & Dana G. Popescu & Zhi Chen, 2019. "Assessing Uncertainty from Point Forecasts," Management Science, INFORMS, vol. 65(1), pages 90-106, January.
    13. Patrizio Frederic & Mario Di Bacco & Frank Lad, 2012. "Combining expert probabilities using the product of odds," Theory and Decision, Springer, vol. 73(4), pages 605-619, October.
    14. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    15. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    16. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    17. Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
    18. Mostaghimi, Mehdi, 1996. "Combining ranked mean value forecasts," European Journal of Operational Research, Elsevier, vol. 94(3), pages 505-516, November.
    19. Lichtendahl Jr., Kenneth C., 2009. "Random quantiles of the Dirichlet process," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 501-507, February.
    20. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:10:y:2001:i:1:d:10.1007_bf02511641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.