IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v164y2001i1p119-137.html
   My bibliography  Save this article

A statistical framework for ecological and aggregate studies

Author

Listed:
  • Jonathan Wakefield
  • Ruth Salway

Abstract

Inference from studies that make use of data at the level of the area, rather than at the level of the individual, is more difficult for a variety of reasons. Some of these difficulties arise because frequently exposures (including confounders) vary within areas. In the most basic form of ecological study the outcome measure is regressed against a simple area level summary of exposure. In the aggregate data approach a survey of exposures and confounders is taken within each area. An alternative approach is to assume a parametric form for the within‐area exposure distribution. We provide a framework within which ecological and aggregate data studies may be viewed, and we review some approaches to inference in such studies, clarifying the assumptions on which they are based. General strategies for analysis are provided including an estimator based on Monte Carlo integration that allows inference in the case of a general risk–exposure model. We also consider the implications of the introduction of random effects, and the existence of confounding and errors in variables.

Suggested Citation

  • Jonathan Wakefield & Ruth Salway, 2001. "A statistical framework for ecological and aggregate studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 119-137.
  • Handle: RePEc:bla:jorssa:v:164:y:2001:i:1:p:119-137
    DOI: 10.1111/1467-985X.00191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-985X.00191
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-985X.00191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leon-Gonzalez, Roberto & Tseng, Fu Min, 2011. "Socio-economic determinants of mortality in Taiwan: Combining individual and aggregate data," Health Policy, Elsevier, vol. 99(1), pages 23-36, January.
    2. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    3. Aleš Urban & Katrin Burkart & Jan Kyselý & Christian Schuster & Eva Plavcová & Hana Hanzlíková & Petr Štěpánek & Tobia Lakes, 2016. "Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic," IJERPH, MDPI, vol. 13(3), pages 1-19, March.
    4. Francesca Dominici & Lianne Sheppard & Merlise Clyde, 2003. "Health Effects of Air Pollution: A Statistical Review," International Statistical Review, International Statistical Institute, vol. 71(2), pages 243-276, August.
    5. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    6. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    7. Judge, George G. & Miller, Douglas J. & Cho, Wendy K. T., 2003. "An Information Theoretic Approach to Ecological Estimation and Inference," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7h03r00q, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Joan G. Staniswalis, 2008. "Incorporating Marginal Covariate Information in a Nonparametric Regression Model for a Sample of R×C Tables," Biometrics, The International Biometric Society, vol. 64(4), pages 1054-1061, December.
    9. Christopher Jackson & And Nicky Best & Sylvia Richardson, 2008. "Hierarchical related regression for combining aggregate and individual data in studies of socio‐economic disease risk factors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 159-178, January.
    10. Judge, George G. & Miller, Douglas J. & Cho, Wendy K. T., 2003. "An Information Theoretic Approach to Ecological Estimation and Inference," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7h03r00q, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    12. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    13. Duncan Lee & Chris Robertson & Colin Ramsay & Kate Pyper, 2020. "Quantifying the impact of the modifiable areal unit problem when estimating the health effects of air pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    14. Katherine A. Guthrie & Lianne Sheppard & Jon Wakefield, 2002. "A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates," Biometrics, The International Biometric Society, vol. 58(4), pages 898-905, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:164:y:2001:i:1:p:119-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.