IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v49y2000i1p63-79.html
   My bibliography  Save this article

Designing and integrating composite networks for monitoring multivariate gaussian pollution fields

Author

Listed:
  • J. V. Zidek
  • W. Sun
  • N. D. Le

Abstract

Networks of ambient monitoring stations are used to monitor environmental pollution fields such as those for acid rain and air pollution. Such stations provide regular measurements of pollutant concentrations. The networks are established for a variety of purposes at various times so often several stations measuring different subsets of pollutant concentrations can be found in compact geographical regions. The problem of statistically combining these disparate information sources into a single ‘network’ then arises. Capitalizing on the efficiencies so achieved can then lead to the secondary problem of extending this network. The subject of this paper is a set of 31 air pollution monitoring stations in southern Ontario. Each of these regularly measures a particular subset of ionic sulphate, sulphite, nitrite and ozone. However, this subset varies from station to station. For example only two stations measure all four. Some measure just one. We describe a Bayesian framework for integrating the measurements of these stations to yield a spatial predictive distribution for unmonitored sites and unmeasured concentrations at existing stations. Furthermore we show how this network can be extended by using an entropy maximization criterion. The methods assume that the multivariate response field being measured has a joint Gaussian distribution conditional on its mean and covariance function. A conjugate prior is used for these parameters, some of its hyperparameters being fitted empirically.

Suggested Citation

  • J. V. Zidek & W. Sun & N. D. Le, 2000. "Designing and integrating composite networks for monitoring multivariate gaussian pollution fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 63-79.
  • Handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:63-79
    DOI: 10.1111/1467-9876.00179
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00179
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    2. Hessa Al-Thani & Jon Lee, 2020. "An R Package for Generating Covariance Matrices for Maximum-Entropy Sampling from Precipitation Chemistry Data," SN Operations Research Forum, Springer, vol. 1(3), pages 1-21, September.
    3. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    4. Yong Tan & Amir Karbassi Yazdi & Jorge Antunes & Peter Wanke & Angappa Gunasekaran & Henrique Luiz Corrêa & Giuliani Coluccio, 2024. "The Quest for an ESG Country Rank: A Performance Contribution Analysis/MCDM Approach," Mathematics, MDPI, vol. 12(12), pages 1-24, June.
    5. Zhongzhu Chen & Marcia Fampa & Jon Lee, 2023. "On Computing with Some Convex Relaxations for the Maximum-Entropy Sampling Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 368-385, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:63-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.