Annotation Regression for Genome-Wide Association Studies with an Application to Psychiatric Genomic Consortium Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s12561-016-9154-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
- Meinshausen, Nicolai, 2007. "Relaxed Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 374-393, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Peng, Liang & Qi, Yongcheng & Wang, Ruodu, 2014. "Empirical likelihood test for high dimensional linear models," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 85-90.
- Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
- Min, Aleksey & Holzmann, Hajo & Czado, Claudia, 2010. "Model selection strategies for identifying most relevant covariates in homoscedastic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3194-3211, December.
- Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
- Gestel, R.V. & Müller, T. & Bosmans, J., 2016. "Does My High Blood Pressure Improve Your Survival? Overall and Subgroup Learning Curves in Health," Health, Econometrics and Data Group (HEDG) Working Papers 16/27, HEDG, c/o Department of Economics, University of York.
- Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
- Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
- Roberts, S. & Nowak, G., 2014. "Stabilizing the lasso against cross-validation variability," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 198-211.
- Rachel Marceau West & Wenbin Lu & Daniel M Rotroff & Melaine A Kuenemann & Sheng-Mao Chang & Michael C Wu & Michael J Wagner & John B Buse & Alison A Motsinger-Reif & Denis Fourches & Jung-Ying Tzeng, 2019. "Identifying individual risk rare variants using protein structure guided local tests (POINT)," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-24, February.
- Friedman, Jerome H., 2012. "Fast sparse regression and classification," International Journal of Forecasting, Elsevier, vol. 28(3), pages 722-738.
- Du, Pang & Cheng, Guang & Liang, Hua, 2012. "Semiparametric regression models with additive nonparametric components and high dimensional parametric components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2006-2017.
- Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
- Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
- Bergersen, Linn Cecilie & Tharmaratnam, Kukatharmini & Glad, Ingrid K., 2014. "Monotone splines lasso," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 336-351.
- Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
More about this item
Keywords
Finite mixture of regressions; Functional genomic data; Genome-wide association studies; Integrative analysis; Regularized variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9154-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.