IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v8y2016i1d10.1007_s12561-014-9117-1.html
   My bibliography  Save this article

Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials

Author

Listed:
  • Yanxun Xu

    (The University of Texas at Austin)

  • Lorenzo Trippa

    (Harvard School of Public Health)

  • Peter Müller

    (The University of Texas at Austin)

  • Yuan Ji

    (NorthShore University Health System
    The University of Chicago)

Abstract

Targeted therapies based on biomarker profiling are becoming a mainstream direction of cancer research and treatment. Depending on the expression of specific prognostic biomarkers, targeted therapies assign different cancer drugs to subgroups of patients even if they are diagnosed with the same type of cancer by traditional means, such as tumor location. For example, Herceptin is only indicated for the subgroup of patients with HER2+ breast cancer, but not other types of breast cancer. However, subgroups like HER2+ breast cancer with effective targeted therapies are rare, and most cancer drugs are still being applied to large patient populations that include many patients who might not respond or benefit. Also, the response to targeted agents in humans is usually unpredictable. To address these issues, we propose subgroup-based adaptive (SUBA), designs that simultaneously search for prognostic subgroups and allocate patients adaptively to the best subgroup-specific treatments throughout the course of the trial. The main features of SUBA include the continuous reclassification of patient subgroups based on a random partition model and the adaptive allocation of patients to the best treatment arm based on posterior predictive probabilities. We compare the SUBA design with three alternative designs including equal randomization, outcome-adaptive randomization, and a design based on a probit regression. In simulation studies, we find that SUBA compares favorably against the alternatives.

Suggested Citation

  • Yanxun Xu & Lorenzo Trippa & Peter Müller & Yuan Ji, 2016. "Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 159-180, June.
  • Handle: RePEc:spr:stabio:v:8:y:2016:i:1:d:10.1007_s12561-014-9117-1
    DOI: 10.1007/s12561-014-9117-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-014-9117-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-014-9117-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
    2. Baladandayuthapani, Veerabhadran & Ji, Yuan & Talluri, Rajesh & Nieto-Barajas, Luis E. & Morris, Jeffrey S., 2010. "Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1358-1375.
    3. Riten Mitra & Peter Müller & Shoudan Liang & Lu Yue & Yuan Ji, 2013. "A Bayesian Graphical Model for ChIP-Seq Data on Histone Modifications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 69-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juhee Lee & Peter F. Thall & Pavlos Msaouel, 2023. "Bayesian treatment screening and selection using subgroup‐specific utilities of response and toxicity," Biometrics, The International Biometric Society, vol. 79(3), pages 2458-2473, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    2. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    3. Sambucini, Valeria, 2019. "Bayesian predictive monitoring with bivariate binary outcomes in phase II clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 18-30.
    4. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    5. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    6. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    7. Valeria Sambucini, 2021. "Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    8. Alexander M. Kaizer & Brian P. Hobbs & Joseph S. Koopmeiners, 2018. "A multi‐source adaptive platform design for testing sequential combinatorial therapeutic strategies," Biometrics, The International Biometric Society, vol. 74(3), pages 1082-1094, September.
    9. Zongliang Hu & Tiejun Tong & Marc G. Genton, 2019. "Diagonal likelihood ratio test for equality of mean vectors in high‐dimensional data," Biometrics, The International Biometric Society, vol. 75(1), pages 256-267, March.
    10. Waverly Wei & Xinwei Ma & Jingshen Wang, 2023. "Fair Adaptive Experiments," Papers 2310.16290, arXiv.org.
    11. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    12. Valeria Sambucini, 2021. "Efficacy and toxicity monitoring via Bayesian predictive probabilities in phase II clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 637-663, June.
    13. Engler David & Shen Yiping & Gusella James & Betensky Rebecca A., 2011. "Comparison of Clinical Subgroup aCGH Profiles through Pseudolikelihood Ratio Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, July.
    14. Guosheng Yin & Nan Chen & J. Jack Lee, 2018. "Bayesian Adaptive Randomization and Trial Monitoring with Predictive Probability for Time-to-Event Endpoint," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 420-438, August.
    15. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.
    16. Priyam Das & Christine B. Peterson & Yang Ni & Alexandre Reuben & Jiexin Zhang & Jianjun Zhang & Kim‐Anh Do & Veerabhadran Baladandayuthapani, 2023. "Bayesian hierarchical quantile regression with application to characterizing the immune architecture of lung cancer," Biometrics, The International Biometric Society, vol. 79(3), pages 2474-2488, September.
    17. Daiane Aparecida Zuanetti & Peter Müller & Yitan Zhu & Shengjie Yang & Yuan Ji, 2018. "Clustering distributions with the marginalized nested Dirichlet process," Biometrics, The International Biometric Society, vol. 74(2), pages 584-594, June.
    18. Dongjun Chung & Hang J Kim & Hongyu Zhao, 2017. "graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:8:y:2016:i:1:d:10.1007_s12561-014-9117-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.