IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005388.html
   My bibliography  Save this article

graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture

Author

Listed:
  • Dongjun Chung
  • Hang J Kim
  • Hongyu Zhao

Abstract

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at https://dongjunchung.github.io/GGPA/.Author summary: Recently, there has been accumulating evidence suggesting pleiotropy, i.e., genetic components shared across multiple phenotypes. Incorporation of pleiotropy in genetic analysis might improve statistical power to identify risk associated genetic variants. Several statistical approaches have been proposed to utilize pleiotropy for association mapping but they are currently still limited to a relatively small number of phenotypes, e.g., a pair of phenotypes. This restricts potential gain in statistical power in association mapping and investigation of pleiotropic structure among a large number of phenotypes. In order to address this challenge, in this paper, we propose graph-GPA, a novel statistical framework to integrate a large number of phenotypes using a hidden Markov random field architecture. Application of the proposed statistical method to GWAS datasets for 12 phenotypes showed that graph-GPA does not only provide a parsimonious representation of genetic relationship among these phenotypes, but also identify significantly larger number of novel genetic variants that are potentially functional. We believe that this novel approach might help investigation of common etiology and improvement of diagnosis and therapeutics.

Suggested Citation

  • Dongjun Chung & Hang J Kim & Hongyu Zhao, 2017. "graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
  • Handle: RePEc:plo:pcbi00:1005388
    DOI: 10.1371/journal.pcbi.1005388
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005388
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005388&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Kyle Kai-How Farh & Alexander Marson & Jiang Zhu & Markus Kleinewietfeld & William J. Housley & Samantha Beik & Noam Shoresh & Holly Whitton & Russell J. H. Ryan & Alexander A. Shishkin & Meital Hatan, 2015. "Genetic and epigenetic fine mapping of causal autoimmune disease variants," Nature, Nature, vol. 518(7539), pages 337-343, February.
    3. Riten Mitra & Peter Müller & Shoudan Liang & Lu Yue & Yuan Ji, 2013. "A Bayesian Graphical Model for ChIP-Seq Data on Histone Modifications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 69-80, March.
    4. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    2. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    3. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    4. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    5. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    6. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    7. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    8. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    9. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    10. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    11. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    12. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    13. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    14. Hwang, ShinYoung & Kim Seongcheol, 2017. "What triggers the use of mIM service provider’s sequel O2O service extensions?," 14th ITS Asia-Pacific Regional Conference, Kyoto 2017: Mapping ICT into Transformation for the Next Information Society 168494, International Telecommunications Society (ITS).
    15. Sana Sadiq & Khadija Anasse & Najib Slimani, 2022. "The impact of mobile phones on high school students: connecting the research dots," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 252-270, April.
    16. Maude Hasbi & Antoine Dubus, 2019. "Determinants of Mobile Broadband Use in Developing Economies: Evidence from Sub-Saharan Africa," Working Papers hal-02264651, HAL.
    17. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    18. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    19. Martins, José & Costa, Catarina & Oliveira, Tiago & Gonçalves, Ramiro & Branco, Frederico, 2019. "How smartphone advertising influences consumers' purchase intention," Journal of Business Research, Elsevier, vol. 94(C), pages 378-387.
    20. Retina Rimal & Chris Papadopoulos, 2016. "The mental health of sexually trafficked female survivors in Nepal," International Journal of Social Psychiatry, , vol. 62(5), pages 487-495, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.