IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i2d10.1007_s10260-020-00537-3.html
   My bibliography  Save this article

Efficacy and toxicity monitoring via Bayesian predictive probabilities in phase II clinical trials

Author

Listed:
  • Valeria Sambucini

    (Università degli Studi di Roma La Sapienza)

Abstract

Bayesian monitoring strategies based on predictive probabilities are widely used in phase II clinical trials that involve a single efficacy binary variable. The essential idea is to control the predictive probability that the trial will show a conclusive result at the scheduled end of the study, given the information at the interim stage and the prior beliefs. In this paper, we present an extension of this approach to incorporate toxicity considerations in single-arm phase II trials. We consider two binary endpoints representing response and toxicity of the experimental treatment and define the result as successful at the conclusion of the study if the posterior probability of an high efficacy and that of a small toxicity are both sufficiently large. At any interim look, the Multinomial-Dirichlet distribution provides the predictive probability of each possible combination of future efficacy and toxicity outcomes. It is exploited to obtain the predictive probability that the trial will yield a positive outcome, if it continues to the planned end. Different possible interim situations are considered to investigate the behaviour of the proposed predictive rules and the differences with the monitoring strategies based on posterior probabilities are highlighted. Simulation studies are also performed to evaluate the frequentist operating characteristics of the proposed design and to calibrate the design parameters.

Suggested Citation

  • Valeria Sambucini, 2021. "Efficacy and toxicity monitoring via Bayesian predictive probabilities in phase II clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 637-663, June.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:2:d:10.1007_s10260-020-00537-3
    DOI: 10.1007/s10260-020-00537-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00537-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00537-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
    2. Sambucini, Valeria, 2019. "Bayesian predictive monitoring with bivariate binary outcomes in phase II clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Sambucini, 2021. "Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    2. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    3. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    4. Sambucini, Valeria, 2019. "Bayesian predictive monitoring with bivariate binary outcomes in phase II clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 18-30.
    5. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    6. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    7. Fulvio De Santis & Stefania Gubbiotti, 2021. "Sample Size Requirements for Calibrated Approximate Credible Intervals for Proportions in Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-11, January.
    8. Alexander M. Kaizer & Brian P. Hobbs & Joseph S. Koopmeiners, 2018. "A multi‐source adaptive platform design for testing sequential combinatorial therapeutic strategies," Biometrics, The International Biometric Society, vol. 74(3), pages 1082-1094, September.
    9. Waverly Wei & Xinwei Ma & Jingshen Wang, 2023. "Fair Adaptive Experiments," Papers 2310.16290, arXiv.org.
    10. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    11. Yanxun Xu & Lorenzo Trippa & Peter Müller & Yuan Ji, 2016. "Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 159-180, June.
    12. Guosheng Yin & Nan Chen & J. Jack Lee, 2018. "Bayesian Adaptive Randomization and Trial Monitoring with Predictive Probability for Time-to-Event Endpoint," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 420-438, August.
    13. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:2:d:10.1007_s10260-020-00537-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.