IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v16y2024i3d10.1007_s12561-023-09399-1.html
   My bibliography  Save this article

Constrained Multivariate Functional Principal Components Analysis for Novel Outcomes in Eye-Tracking Experiments

Author

Listed:
  • Brian Kwan

    (University of California, Los Angeles)

  • Catherine A. Sugar

    (University of California, Los Angeles
    University of California, Los Angeles)

  • Qi Qian

    (University of California, Los Angeles)

  • Frederick Shic

    (Seattle Children’s Research Institute
    University of Washington)

  • Adam Naples

    (Yale University)

  • Scott P. Johnson

    (University of California, Los Angeles)

  • Sara J. Webb

    (Seattle Children’s Research Institute
    University of Washington)

  • Shafali Jeste

    (University of South California)

  • Susan Faja

    (Boston Children’s Hospital, Harvard Medical School)

  • April R. Levin

    (Boston Children’s Hospital and Harvard Medical School)

  • Geraldine Dawson

    (Duke University)

  • James C. McPartland

    (Yale University)

  • Damla Şentürk

    (University of California, Los Angeles)

Abstract

Individuals with autism spectrum disorder (ASD) tend to experience greater difficulties with social communication and sensory information processing. Of particular interest in ASD biomarker research is the study of visual attention, effectively quantified in eye tracking (ET) experiments. Eye tracking offers a powerful, safe, and feasible platform for gaining insights into attentional processes by measuring moment-by-moment gaze patterns in response to stimuli. Even though recording is done with millisecond granularity, analyses commonly collapse data across trials into variables such as proportion time spent looking at a region of interest (ROI). In addition, looking times in different ROIs are typically analyzed separately. We propose a novel multivariate functional outcome that carries proportion looking time information from multiple regions of interest jointly as a function of trial type, along with a novel constrained multivariate functional principal components analysis procedure to capture the variation in this outcome. The method incorporates the natural constraint that the proportion looking times from the multiple regions of interest must sum up to one. Our approach is motivated by the Activity Monitoring task, a social-attentional assay within the ET battery of the Autism Biomarkers Consortium for Clinical Trials (ABC-CT). Application of our methods to the ABC-CT data yields new insights into dominant modes of variation of proportion looking times from multiple regions of interest for school-age children with ASD and their typically developing (TD) peers, as well as richer analysis of diagnostic group differences in social attention.

Suggested Citation

  • Brian Kwan & Catherine A. Sugar & Qi Qian & Frederick Shic & Adam Naples & Scott P. Johnson & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Levin & Geraldine Dawson & James C. McPartland & Daml, 2024. "Constrained Multivariate Functional Principal Components Analysis for Novel Outcomes in Eye-Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 578-603, December.
  • Handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09399-1
    DOI: 10.1007/s12561-023-09399-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09399-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09399-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talská, R. & Menafoglio, A. & Machalová, J. & Hron, K. & Fišerová, E., 2018. "Compositional regression with functional response," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 66-85.
    2. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    3. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    2. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Jia Guo & Shiyan Ma & Xiang Li, 2022. "Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    4. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    5. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Qi Qian & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Sudipto Banerjee & Yihao Li & Damla Şentürk, 2024. "Multivariate Varying Coefficient Spatiotemporal Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 761-786, December.
    7. Acal, C. & Aguilera, A.M. & Alonso, F.J. & Ruiz-Castro, J.E. & Roldán, J.B., 2024. "Different PCA approaches for vector functional time series with applications to resistive switching processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 288-298.
    8. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Song, Jun & Li, Bing, 2021. "Nonlinear and additive principal component analysis for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    10. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    11. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    12. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    13. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    14. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    15. Aranya Koshy & Shahin Tavakoli, 2022. "Exploring British accents: Modelling the trap–bath split with functional data analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 773-805, August.
    16. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    17. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Jitka Machalová & Renáta Talská & Karel Hron & Aleš Gába, 2021. "Compositional splines for representation of density functions," Computational Statistics, Springer, vol. 36(2), pages 1031-1064, June.
    19. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    20. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09399-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.