IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v15y2023i2d10.1007_s12561-023-09364-y.html
   My bibliography  Save this article

Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts

Author

Listed:
  • Q. Shao

    (The University of Toledo)

Abstract

The outbreak of the novel coronavirus (COVID-19) was declared to be a global emergency in January of 2020, and everyday life throughout the world was disrupted. Among many questions about COVID-19 that remain unanswered, it is of interest for society to identify whether there is any significant difference in daily case counts between males and females. The daily case count sequences are correlated due to the nature of a contagious disease, and contain a nonlinear trend owing to several unexpected events, such as vaccinations and the appearance of the delta variant. It is possible that these unexpected events have changed the dynamical system that generates data. The classic t-test is not appropriate to analyze such correlated data with a nonconstant trend. This study applies a simultaneous confidence band approach in an attempt to overcome these difficulties; that is, a simultaneous confidence band for the trend of an autoregressive moving-average time series is constructed using B-spline estimation. The proposed method is applied to the daily case count data of seniors of both genders (at least 60 years old) in the State of Ohio from April 1, 2020 to March 31, 2022, and the result shows that there is a significant difference at the 95% confidence level between the two gender case counts adjusted for the population sizes.

Suggested Citation

  • Q. Shao, 2023. "Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 372-383, July.
  • Handle: RePEc:spr:stabio:v:15:y:2023:i:2:d:10.1007_s12561-023-09364-y
    DOI: 10.1007/s12561-023-09364-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09364-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09364-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang Liu & Qin Shao & Robert Lund & Jonathan Woody, 2016. "Testing for seasonal means in time series data," Environmetrics, John Wiley & Sons, Ltd., vol. 27(4), pages 198-211, June.
    2. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    3. Peter Hall & Ingrid Van Keilegom, 2003. "Using difference‐based methods for inference in nonparametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 443-456, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    2. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    3. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    4. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    5. Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    6. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    7. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    8. Inder Tecuapetla-Gómez & Axel Munk, 2017. "Autocovariance Estimation in Regression with a Discontinuous Signal and m-Dependent Errors: A Difference-Based Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 346-368, June.
    9. Wei, Honglei & Zhang, Hongfan & Jiang, Hui & Huang, Lei, 2022. "On the semi-varying coefficient dynamic panel data model with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    10. Qiu, D. & Shao, Q. & Yang, L., 2013. "Efficient inference for autoregressive coefficients in the presence of trends," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 40-53.
    11. Jie Li & Jiangyan Wang & Lijian Yang, 2022. "Kolmogorov–Smirnov simultaneous confidence bands for time series distribution function," Computational Statistics, Springer, vol. 37(3), pages 1015-1039, July.
    12. A. Pérez-González & J. Vilar-Fernández & W. González-Manteiga, 2009. "Asymptotic properties of local polynomial regression with missing data and correlated errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 85-109, March.
    13. K De Brabanter & F Cao & I Gijbels & J Opsomer, 2018. "Local polynomial regression with correlated errors in random design and unknown correlation structure," Biometrika, Biometrika Trust, vol. 105(3), pages 681-690.
    14. Kim, Tae Yoon & Park, Byeong U. & Moon, Myung Sang & Kim, Chiho, 2009. "Using bimodal kernel for inference in nonparametric regression with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1487-1497, August.
    15. Krivobokova, Tatyana & Serra, Paulo & Rosales, Francisco & Klockmann, Karolina, 2022. "Joint non-parametric estimation of mean and auto-covariances for Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Huan Wang & Mary C. Meyer & Jean D. Opsomer, 2013. "Constrained spline regression in the presence of AR(p) errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 809-827, December.
    17. Huang, Lei & Jiang, Hui & Wang, Huixia, 2019. "A novel partial-linear single-index model for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 110-122.
    18. T. Subba Rao & Gyorgy Terdik, 2017. "A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 936-959, November.
    19. Lyubchich, Vyacheslav & Gel, Yulia R., 2016. "A local factor nonparametric test for trend synchronism in multiple time series," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 91-104.
    20. Yuanyuan Zhang & Rong Liu & Qin Shao & Lijian Yang, 2020. "Two‐Step Estimation for Time Varying Arch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 551-570, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:15:y:2023:i:2:d:10.1007_s12561-023-09364-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.