IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i4p809-827.html
   My bibliography  Save this article

Constrained spline regression in the presence of AR(p) errors

Author

Listed:
  • Huan Wang
  • Mary C. Meyer
  • Jean D. Opsomer

Abstract

Extracting the trend from the pattern of observations is always difficult, especially when the trend is obscured by correlated errors. Often, prior knowledge of the trend does not include a parametric family, and instead the valid assumptions are vague, such as 'smooth' or 'monotone increasing'. Incorrectly specifying the trend as some simple parametric form can lead to overestimation of the correlation. The proposed method uses spline regression with shape constraints, such as monotonicity or convexity, for estimation and inference in the presence of stationary AR(p) errors. Standard criteria for selection of penalty parameter, such as Akaike information criterion (AIC), cross-validation and generalised cross-validation, have been shown to behave badly when the errors are correlated and in the absence of shape constraints. In this article, correlation structure and penalty parameter are selected simultaneously using a correlation-adjusted AIC. The asymptotic properties of unpenalised spline regression in the presence of correlation are investigated. It is proved that even if the estimation of the correlation is inconsistent, the corresponding projection estimation of the regression function can still be consistent and have the optimal asymptotic rate, under appropriate conditions. The constrained spline fit attains the convergence rate of unconstrained spline fit in the presence of AR(p) errors. Simulation results show that the constrained estimator typically behaves better than the unconstrained version if the true trend satisfies the constraints.

Suggested Citation

  • Huan Wang & Mary C. Meyer & Jean D. Opsomer, 2013. "Constrained spline regression in the presence of AR(p) errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 809-827, December.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:4:p:809-827
    DOI: 10.1080/10485252.2013.804075
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.804075
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.804075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    2. Peter Hall & J. D. Opsomer, 2005. "Theory for penalised spline regression," Biometrika, Biometrika Trust, vol. 92(1), pages 105-118, March.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    4. Yingxing Li & David Ruppert, 2008. "On the asymptotics of penalized splines," Biometrika, Biometrika Trust, vol. 95(2), pages 415-436.
    5. Gerda Claeskens & Tatyana Krivobokova & Jean D. Opsomer, 2009. "Asymptotic properties of penalized spline estimators," Biometrika, Biometrika Trust, vol. 96(3), pages 529-544.
    6. Peter Hall & Ingrid Van Keilegom, 2003. "Using difference‐based methods for inference in nonparametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 443-456, May.
    7. Kim, Tae Yoon & Park, Byeong U. & Moon, Myung Sang & Kim, Chiho, 2009. "Using bimodal kernel for inference in nonparametric regression with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1487-1497, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    2. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    4. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    5. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    6. Rong Chen & Hua Liang & Jing Wang, 2011. "Determination of linear components in additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 367-383.
    7. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    8. Lee, Wang-Sheng, 2014. "Is the BMI a Relic of the Past?," IZA Discussion Papers 8637, Institute of Labor Economics (IZA).
    9. repec:wyi:journl:002195 is not listed on IDEAS
    10. repec:hum:wpaper:sfb649dp2013-033 is not listed on IDEAS
    11. repec:wyi:journl:002174 is not listed on IDEAS
    12. Lee, Wang-Sheng, 2014. "Big and Tall: Is there a Height Premium or Obesity Penalty in the Labor Market?," IZA Discussion Papers 8606, Institute of Labor Economics (IZA).
    13. I. Gijbels & I. Prosdocimi & G. Claeskens, 2010. "Nonparametric estimation of mean and dispersion functions in extended generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 580-608, November.
    14. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    15. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    16. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    17. Tracy Wu & Haiqun Lin & Yan Yu, 2011. "Single-index coefficient models for nonlinear time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 37-58.
    18. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    19. Kalogridis, Ioannis & Van Aelst, Stefan, 2024. "Robust penalized spline estimation with difference penalties," Econometrics and Statistics, Elsevier, vol. 29(C), pages 169-188.
    20. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
    21. Luo Xiao & Yingxing Li & David Ruppert, 2013. "Fast bivariate P-splines: the sandwich smoother," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 577-599, June.
    22. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    23. Christian Schluter & Jackline Wahba, 2012. "Abstract: Illegal Migration, Wages, and Remittances: Semi-Parametric Estimation of Illegality Effects," Norface Discussion Paper Series 2012037, Norface Research Programme on Migration, Department of Economics, University College London.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:4:p:809-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.