IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v14y2022i2d10.1007_s12561-021-09323-5.html
   My bibliography  Save this article

Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression

Author

Listed:
  • Arnaud Monseur

    (Pharmalex Belgium)

  • Bradley P. Carlin

    (Pharmalex US)

  • Bruno Boulanger

    (Pharmalex Belgium)

  • Andreea Seferian

    (Hôpital Armand Trousseau)

  • Laurent Servais

    (Hôpital Armand Trousseau
    University Hospital of Liège and University of Liège
    University of Oxford
    Level 2, John Radcliffe Hospital)

  • Chris Freitag

    (Dynacure)

  • Leen Thielemans

    (Dynacure
    2 Bridge)

Abstract

The small sample sizes inherent in rare and pediatric disease settings offer significant challenges for clinical trial design. In such settings, Bayesian adaptive trial methods can often pay dividends, allowing the sensible incorporation of auxiliary data and other relevant information to bolster that collected by the trial itself. Previous work has also included the use of one-arm trials augmented by the participants’ own natural history data, from which the future course of the disease in the absence of intervention can be predicted. Patient response can then be defined by the degree to which post-intervention observations are inconsistent with the predicted “natural” trajectory. While such trials offer obvious advantages in efficiency and ethical hazard (since they expose no new patients to a placebo, anathema to patients or their parents and caregivers), they can offer no protection against bias arising from the presence of any “placebo effect,” the tendency of patients to improve merely by being in the trial. In this paper, we investigate the impact of both static and transient placebo effects on one-arm responder studies of this type, as well as two-arm versions that incorporate a small concurrent placebo group but still borrow strength from the natural history data. We also propose more traditional Bayesian changepoint models that specify a parametric functional form for the patient’s post-intervention trajectory, which in turn allow quantification of the treatment benefit in terms of the model parameters, rather than semi-parametrically in terms of a response relative to some “null” model. We compare the operating characteristics of our designs in the context of an ongoing investigation of centronuclear myopathies (CNMs), a group of congenital neuromuscular diseases whose most common and severe form is X-linked, affecting approximately 1 in 50,000 newborn boys. Our results indicate our two-arm responder and changepoint methods can offer protection against placebo effects, improving power while protecting the trial’s Type I error rate. However, further research into innovative trial designs as well as ongoing dialog with regulatory authorities remain critically important in rare disease research.

Suggested Citation

  • Arnaud Monseur & Bradley P. Carlin & Bruno Boulanger & Andreea Seferian & Laurent Servais & Chris Freitag & Leen Thielemans, 2022. "Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 237-258, July.
  • Handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-021-09323-5
    DOI: 10.1007/s12561-021-09323-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09323-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09323-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    2. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    3. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    2. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    3. Lanju Zhang & Zailong Wang & Li Wang & Lu Cui & Jeremy Sokolove & Ivan Chan, 2022. "A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 216-236, July.
    4. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    5. Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
    6. Danila Azzolina & Giulia Lorenzoni & Silvia Bressan & Liviana Da Dalt & Ileana Baldi & Dario Gregori, 2021. "Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    7. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    8. Moreno Ursino & Nigel Stallard, 2021. "Bayesian Approaches for Confirmatory Trials in Rare Diseases: Opportunities and Challenges," IJERPH, MDPI, vol. 18(3), pages 1-9, January.
    9. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    10. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    11. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    12. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    13. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    14. Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
    15. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    16. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    17. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    18. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    19. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    20. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:14:y:2022:i:2:d:10.1007_s12561-021-09323-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.