IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v13y2021i3d10.1007_s12561-021-09300-y.html
   My bibliography  Save this article

Enhanced Doubly Robust Procedure for Causal Inference

Author

Listed:
  • Ao Yuan

    (Georgetown University)

  • Anqi Yin

    (Georgetown University)

  • Ming T. Tan

    (Georgetown University)

Abstract

In the last two decades, doubly robust estimators (DREs) have been developed for causal inference on various target parameters derived from different study designs. The approach combines propensity score and outcome models of the confounding variables. It yields unbiased estimator of the target parameter if at least one of the two models is correctly specified, a desirable property and an improvement on the inverse propensity score weighted estimate. However, in practice it is difficult to know what the correct model could be and both propensity score and outcome models may be incorrectly specified. Furthermore, it is known that DRE may fail and give estimates with large bias and variance, even when the propensity and/or outcome models are mildly misspecified. To reduce such risk and increase robustness in inference, we propose an enhanced DRE method utilizing semiparametric models with nonparametric monotone link functions for both the propensity score and the outcome models. The models are estimated using an iterative procedure incorporating the pool adjacent violators algorithm. We then study the asymptotic properties of the enhanced DREs. Simulation studies, performed to evaluate their finite sample performance, demonstrated clear superiority to several commonly used doubly robust procedures with reduced bias and increased efficiency even with both models are misspecified, thus enhancing the robustness of DRE. The method is then applied to analyzing a clinical trial from the AIDS Clinical Trials Group and the National Epidemiology Follow-up Study.

Suggested Citation

  • Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.
  • Handle: RePEc:spr:stabio:v:13:y:2021:i:3:d:10.1007_s12561-021-09300-y
    DOI: 10.1007/s12561-021-09300-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09300-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09300-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Weihua Cao & Anastasios A. Tsiatis & Marie Davidian, 2009. "Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data," Biometrika, Biometrika Trust, vol. 96(3), pages 723-734.
    3. J. Huang & J. A. Wellner, 1995. "Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 49(2), pages 153-163, July.
    4. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    5. Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
    6. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    7. Rubin Daniel B & van der Laan Mark J., 2008. "Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-42, May.
    8. Shu Yang & Guido W. Imbens & Zhanglin Cui & Douglas E. Faries & Zbigniew Kadziola, 2016. "Propensity score matching and subclassification in observational studies with multi‐level treatments," Biometrics, The International Biometric Society, vol. 72(4), pages 1055-1065, December.
    9. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison: Rejoinder," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 35-38, January.
    10. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    11. Georgia Papadogeorgou & Fan Li, 2019. "Discussion of “Penalized Spline of Propensity Methods for Treatment Comparison”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 32-35, January.
    12. Ted Westling & Peter Gilbert & Marco Carone, 2020. "Causal isotonic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 719-747, July.
    13. Andrea Rotnitzky & Quanhong Lei & Mariela Sued & James M. Robins, 2012. "Improved double-robust estimation in missing data and causal inference models," Biometrika, Biometrika Trust, vol. 99(2), pages 439-456.
    14. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 1-19, January.
    15. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
    2. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
    3. Lee, Myoung-jae & Lee, Sanghyeok, 2019. "Double robustness without weighting," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 175-180.
    4. Y Cui & E J Tchetgen Tchetgen, 2024. "Selective machine learning of doubly robust functionals," Biometrika, Biometrika Trust, vol. 111(2), pages 517-535.
    5. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    6. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2022. "Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies," Stats, MDPI, vol. 5(4), pages 1-17, December.
    7. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    8. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    9. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    10. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
    12. Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018. "A General Double Robustness Result For Estimating Average Treatment Effects," Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
    13. AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
    14. repec:bla:istatr:v:83:y:2015:i:3:p:449-471 is not listed on IDEAS
    15. Vermeulen Karel & Vansteelandt Stijn, 2016. "Data-Adaptive Bias-Reduced Doubly Robust Estimation," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 253-282, May.
    16. Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
    17. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    18. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    19. Lan Wen & Miguel A. Hernán & James M. Robins, 2022. "Multiply robust estimators of causal effects for survival outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1304-1328, September.
    20. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    21. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:13:y:2021:i:3:d:10.1007_s12561-021-09300-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.