IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i2d10.1007_s12561-017-9202-3.html
   My bibliography  Save this article

Population-Enrichment Adaptive Design Strategy for an Event-Driven Vaccine Efficacy Trial

Author

Listed:
  • Shu-Chih Su

    (Merck Research Laboratories)

  • Xiaoming Li

    (Atara Biotherapeutics, Inc.)

  • Yanli Zhao

    (Clinical Biostatistics, MedImmune/Astrazeneca)

  • Ivan S. F. Chan

    (AbbVie)

Abstract

A population-enrichment adaptive design allows a prospective use for study population selection. It has the flexibility allowing pre-specified modifications to an ongoing trial to mitigate the potential risk associated with the assumptions made at design stage. In this way, the trial can potentially encompass a broader target patient population, and move forward only with the subpopulations that appear to be benefiting from the treatment. Our work is motivated by a Phase III event-driven vaccine efficacy trial. Two target patient subpopulations were enrolled with the assumption that vaccine efficacy can be demonstrated based on the combined population. It is recognized due to the nature of patients’ underlying conditions, one subpopulation might respond to the treatment better than the other. To maximize the probability of demonstrating vaccine efficacy in at least one patient population while taking advantage of combining two subpopulations in one single trial, an adaptive design strategy with potential population enrichment is developed. Specifically, if the observed vaccine efficacy at interim for one subpopulation is not promising to warrant carrying forward, the population may be enriched with the other subpopulation with better performance. Simulations were conducted to evaluate the operational characteristics from a selection of interim analysis plans. This population-enrichment design provides a more efficient way as compared to the conventional approaches when targeting multiple subpopulations. If executed and planned with caution, this strategy can provide a greater chance of success of the trial and help maintain scientific and regulatory rigors.

Suggested Citation

  • Shu-Chih Su & Xiaoming Li & Yanli Zhao & Ivan S. F. Chan, 2018. "Population-Enrichment Adaptive Design Strategy for an Event-Driven Vaccine Efficacy Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 357-370, August.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9202-3
    DOI: 10.1007/s12561-017-9202-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9202-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9202-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Irle & Helmut Schäfer, 2012. "Interim Design Modifications in Time-to-Event Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 341-348, March.
    2. Brannath, Werner & Bretz, Frank, 2010. "Shortcuts for Locally Consonant Closed Test Procedures," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 660-669.
    3. Lihui Zhao & Lu Tian & Tianxi Cai & Brian Claggett & L. J. Wei, 2013. "Effectively Selecting a Target Population for a Future Comparative Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 527-539, June.
    4. Ivan S. F. Chan & Zhongxin Zhang, 1999. "Test-Based Exact Confidence Intervals for the Difference of Two Binomial Proportions," Biometrics, The International Biometric Society, vol. 55(4), pages 1202-1209, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    2. Wentian Guo & Yuan Ji & Daniel V. T. Catenacci, 2017. "A subgroup cluster-based Bayesian adaptive design for precision medicine," Biometrics, The International Biometric Society, vol. 73(2), pages 367-377, June.
    3. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    4. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    5. Dongyuan Wu & Guogen Shan, 2024. "Score confidence interval with continuity correction for ratio of two independent proportions," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 183-199, August.
    6. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    7. Rene Schmidt & Andreas Faldum & Robert Kwiecien, 2018. "Adaptive designs for the one†sample log†rank test," Biometrics, The International Biometric Society, vol. 74(2), pages 529-537, June.
    8. Philippe Flandre, 2011. "Statistical Methods in Recent HIV Noninferiority Trials: Reanalysis of 11 Trials," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    9. Caiyun Fan & Wenbin Lu & Rui Song & Yong Zhou, 2017. "Concordance-assisted learning for estimating optimal individualized treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1565-1582, November.
    10. Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
    11. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    12. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    13. Runchao Jiang & Wenbin Lu & Rui Song & Marie Davidian, 2017. "On estimation of optimal treatment regimes for maximizing t-year survival probability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1165-1185, September.
    14. P. Elliott & K. Riggs, 2015. "Confidence regions for two proportions from independent negative binomial distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 27-36, January.
    15. Reiczigel, Jeno & Abonyi-Tóth, Zsolt & Singer, Júlia, 2008. "An exact confidence set for two binomial proportions and exact unconditional confidence intervals for the difference and ratio of proportions," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5046-5053, July.
    16. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    17. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.
    18. Stefan Wager, 2024. "Sequential Validation of Treatment Heterogeneity," Papers 2405.05534, arXiv.org.
    19. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    20. Tang, Man-Lai & Qiu, Shi-Fang & Poon, Wai-Yin, 2012. "Confidence interval construction for disease prevalence based on partial validation series," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1200-1220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9202-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.