IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i2p291-311.html
   My bibliography  Save this article

Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs

Author

Listed:
  • Ying Huang
  • Juhee Cho
  • Youyi Fong

Abstract

The effect of treatment on binary disease outcome can differ across subgroups characterised by other covariates. Testing for the existence of subgroups that are associated with heterogeneous treatment effects can provide valuable insight regarding the optimal treatment recommendation in practice. Our research in this paper is motivated by the question of whether host genetics could modify a vaccine's effect on HIV acquisition risk. To answer this question, we used data from an HIV vaccine trial with a two‐phase sampling design and developed a general threshold‐based model framework to test for the existence of subgroups associated with the heterogeneity in disease risks, allowing for subgroups based on multivariate covariates. We developed a testing procedure based on maximum of likelihood ratio statistics over change‐planes and demonstrated its advantage over alternative methods. We further developed the testing procedure to account for bias sampling of expensive (i.e. resource‐intensive to measure) covariates through the incorporation of inverse probability weighting techniques. We used the proposed method to analyse the motivating HIV vaccine trial data. Our proposed testing procedure also has broad applications in epidemiological studies for assessing heterogeneity in disease risk with respect to univariate or multivariate predictors.

Suggested Citation

  • Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:2:p:291-311
    DOI: 10.1111/rssc.12459
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12459
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    2. E. B. Laber & Y. Q. Zhao, 2015. "Tree-based methods for individualized treatment regimes," Biometrika, Biometrika Trust, vol. 102(3), pages 501-514.
    3. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    4. Antoch, Jaromír & Gregoire, Gérard & Jarusková, Daniela, 2004. "Detection of structural changes in generalized linear models," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 315-332, September.
    5. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    6. Xiao Song & Margaret Sullivan Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," Biometrics, The International Biometric Society, vol. 60(4), pages 874-883, December.
    7. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    8. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    9. Youyi Fong & Chongzhi Di & Ying Huang & Peter B. Gilbert, 2017. "Model-robust inference for continuous threshold regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 452-462, June.
    10. Xiao Song & Margaret Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," UW Biostatistics Working Paper Series 1029, Berkeley Electronic Press.
    11. Hong‐Tu Zhu & Heping Zhang, 2004. "Hypothesis testing in mixture regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 3-16, February.
    12. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    13. Ailin Fan & Rui Song & Wenbin Lu, 2017. "Change-Plane Analysis for Subgroup Detection and Sample Size Calculation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 769-778, April.
    14. Lihui Zhao & Lu Tian & Tianxi Cai & Brian Claggett & L. J. Wei, 2013. "Effectively Selecting a Target Population for a Future Comparative Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 527-539, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
    2. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    3. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    4. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.
    5. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    6. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    7. Ailin Fan & Rui Song & Wenbin Lu, 2017. "Change-Plane Analysis for Subgroup Detection and Sample Size Calculation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 769-778, April.
    8. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    9. Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 695-707, September.
    10. Ruo-fan Wu & Ming Zheng & Wen Yu, 2016. "Subgroup Analysis with Time-to-Event Data Under a Logistic-Cox Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 863-878, September.
    11. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    12. Jingxiang Chen & Haoda Fu & Xuanyao He & Michael R. Kosorok & Yufeng Liu, 2018. "Estimating individualized treatment rules for ordinal treatments," Biometrics, The International Biometric Society, vol. 74(3), pages 924-933, September.
    13. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    14. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    15. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    16. Janes Holly & Brown Marshall D. & Huang Ying & Pepe Margaret S., 2014. "An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 99-121, May.
    17. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    18. Youyi Fong & Chongzhi Di & Ying Huang & Peter B. Gilbert, 2017. "Model-robust inference for continuous threshold regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 452-462, June.
    19. Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
    20. Zhang, Haixiang & Huang, Jian & Sun, Liuquan, 2020. "A rank-based approach to estimating monotone individualized two treatment regimes," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:2:p:291-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.