IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i5p1200-1220.html
   My bibliography  Save this article

Confidence interval construction for disease prevalence based on partial validation series

Author

Listed:
  • Tang, Man-Lai
  • Qiu, Shi-Fang
  • Poon, Wai-Yin

Abstract

It is desirable to estimate disease prevalence based on data collected by a gold standard test, but such a test is often limited due to cost and ethical considerations. Data with partial validation series thus become an alternative. The construction of confidence intervals for disease prevalence with such data is considered. A total of 12 methods, which are based on two Wald-type test statistics, score test statistic, and likelihood ratio test statistic, are developed. Both asymptotic and approximate unconditional confidence intervals are constructed. Two methods are employed to construct the unconditional confidence intervals: one involves inverting two one-sided tests and the other involves inverting one two-sided test. Moreover, the bootstrapping method is used. Two real data sets are used to illustrate the proposed methods. Empirical results suggest that the 12 methods largely produce satisfactory results, and the confidence intervals derived from the score test statistic and the Wald test statistic with nuisance parameters appropriately evaluated generally outperform the others in terms of coverage. If the interval location or the non-coverage at the two ends of the interval is also of concern, then the aforementioned interval based on the Wald test becomes the best choice.

Suggested Citation

  • Tang, Man-Lai & Qiu, Shi-Fang & Poon, Wai-Yin, 2012. "Confidence interval construction for disease prevalence based on partial validation series," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1200-1220.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1200-1220
    DOI: 10.1016/j.csda.2011.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311000557
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wai-Yin Poon & Hai-Bin Wang, 2010. "Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 498-520, September.
    2. Alan Agresti & Yongyi Min, 2001. "On Small-Sample Confidence Intervals for Parameters in Discrete Distributions," Biometrics, The International Biometric Society, vol. 57(3), pages 963-971, September.
    3. Nian-Sheng Tang & Man-Lai Tang, 2002. "Exact Unconditional Inference for Risk Ratio in a Correlated 2 × 2 Table with Structural Zero," Biometrics, The International Biometric Society, vol. 58(4), pages 972-980, December.
    4. Ivan S. F. Chan & Nian-Sheng Tang & Man-Lai Tang & Ping-Shing Chan, 2003. "Statistical Analysis of Noninferiority Trials with a Rate Ratio in Small-Sample Matched-Pair Designs," Biometrics, The International Biometric Society, vol. 59(4), pages 1170-1177, December.
    5. Ivan S. F. Chan & Zhongxin Zhang, 1999. "Test-Based Exact Confidence Intervals for the Difference of Two Binomial Proportions," Biometrics, The International Biometric Society, vol. 55(4), pages 1202-1209, December.
    6. Boese, Doyle H. & Young, Dean M. & Stamey, James D., 2006. "Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3369-3385, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyuan Wu & Guogen Shan, 2024. "Score confidence interval with continuity correction for ratio of two independent proportions," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 183-199, August.
    2. Philippe Flandre, 2011. "Statistical Methods in Recent HIV Noninferiority Trials: Reanalysis of 11 Trials," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    3. Reiczigel, Jeno & Abonyi-Tóth, Zsolt & Singer, Júlia, 2008. "An exact confidence set for two binomial proportions and exact unconditional confidence intervals for the difference and ratio of proportions," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5046-5053, July.
    4. Alan Agresti & Sabrina Giordano & Anna Gottard, 2022. "A Review of Score-Test-Based Inference for Categorical Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 31-48, September.
    5. Santner, Thomas J. & Pradhan, Vivek & Senchaudhuri, Pralay & Mehta, Cyrus R. & Tamhane, Ajit, 2007. "Small-sample comparisons of confidence intervals for the difference of two independent binomial proportions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5791-5799, August.
    6. Kabaila, Paul, 2008. "Statistical properties of exact confidence intervals from discrete data using studentized test statistics," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 720-727, April.
    7. Munk, A. & Skipka, G. & Stratmann, B., 2005. "Testing general hypotheses under binomial sampling: the two sample case--asymptotic theory and exact procedures," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 723-739, June.
    8. Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 429-447, September.
    9. Joseph B. Lang, 2017. "Mean-Minimum Exact Confidence Intervals," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 354-368, October.
    10. Tang, Man-Lai & Poon, Wai-Yin & Ling, Leevan & Liao, Yijie & Chui, Hang-Wai, 2011. "Approximate unconditional test procedure for comparing two ordered multinomials," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 955-963, February.
    11. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    12. Liu, Feng & Zhao, Shaoqiong & Li, Yang, 2017. "How many, how often, and how new? A multivariate profiling of mobile app users," Journal of Retailing and Consumer Services, Elsevier, vol. 38(C), pages 71-80.
    13. Martin Andres, A. & Herranz Tejedor, I., 2004. "Exact unconditional non-classical tests on the difference of two proportions," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 373-388, March.
    14. Noriah M. Al-Kandari & Partha Lahiri, 2016. "Prediction Of A Function Of Misclassified Binary Data," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 429-447, September.
    15. Rickey E. Carter & Yan Lin & Stuart R. Lipsitz & Robert G. Newcombe & Kathie L. Hermayer, 2010. "Relative risk estimated from the ratio of two median unbiased estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 657-671, August.
    16. Stamey, James D. & Boese, Doyle H. & Young, Dean M., 2008. "Confidence intervals for parameters of two diagnostic tests in the absence of a gold standard," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1335-1346, January.
    17. Xu Gao & Daniel Gillen & Hernando Ombao, 2018. "Fisher information matrix of binary time series," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 287-304, December.
    18. Rahardja, Dewi & Young, Dean M., 2010. "Credible sets for risk ratios in over-reported two-sample binomial data using the double-sampling scheme," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1281-1287, May.
    19. Lucio Barabesi & Marzia Marcheselli, 2011. "Parameter estimation in the classical occupancy model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 305-327, August.
    20. Tang, Nian-Sheng & Tang, Man-Lai & Qiu, Shi-Fang, 2008. "Testing the equality of proportions for correlated otolaryngologic data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3719-3729, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1200-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.