IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v147y2020i1d10.1007_s11205-019-02154-4.html
   My bibliography  Save this article

Identifying Social Indicators for Sustainability Assessment of CCU Technologies: A Modified Multi-criteria Decision Making

Author

Listed:
  • Parisa Rafiaani

    (UHasselt - Hasselt University, Centre for Environmental Sciences
    University of Liège)

  • Zoumpolia Dikopoulou

    (UHasselt - Hasselt University, Business Informatics)

  • Miet Dael

    (UHasselt - Hasselt University, Centre for Environmental Sciences
    VITO)

  • Tom Kuppens

    (UHasselt - Hasselt University, Centre for Environmental Sciences)

  • Hossein Azadi

    (UHasselt - Hasselt University, Centre for Environmental Sciences
    University of Liège
    Ghent University)

  • Philippe Lebailly

    (University of Liège)

  • Steven Passel

    (UHasselt - Hasselt University, Centre for Environmental Sciences
    University of Antwerp)

Abstract

Carbon capture and utilization (CCU) technologies capture CO2 waste emissions and utilize them to generate new products (such as fuels, chemicals, and materials) with various environmental, economic, and social opportunities. As most of these CCU technologies are in the R&D stage, their technical and economic viability are examined with less attention to the social aspect which is an important pillar for a holistic sustainability assessment. The lack of systematic social impact research is mainly due to the difficulty of identifying and quantifying social aspects through the entire life cycle of products. We will fill this gap for CCU technologies and identify the main social indicators. A multi-criteria decision making tool: technique for order of preference by similarity to ideal solution (TOPSIS) was applied to empirically determine which indicators are more relevant for assessing the social impact of a company operating CCU activities within a European context. First, seeing that social impact categories are linked to key stakeholder groups, we considered workers, consumers, and local communities as relevant stakeholders. Second, the main social impact categories and their potential performance indicators associated to each group of stakeholders were listed using the United Nations Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) guidelines. In the third step, an online questionnaire was distributed to identify the main social categories and indicators for CCU, to which 33 European CCU experts responded. Finally, a modified TOPSIS was applied to rank the indicators based on their relevance. We found that the indicators related to “end of life responsibility” and “transparency” within a CCU company achieved the highest rank affecting the consumers group, whereas “fair salary” and “equal opportunities/discriminations” were determined as the most relevant impact categories for the workers. For the local community group, “secure living conditions” and “local employment” received the highest priority from the experts’ point of view. Furthermore, “health and safety” considerations were identified as one of the most important criteria affecting all three groups of stakeholders. The ranking list of the main social indicators identified in our study provides the basis for the next steps in the social sustainability assessment of CCU technologies; that is, data collection and impact assessment. Our outcomes can also be used to inform the producers regarding the most and least relevant social aspects of CCU so that the potential social impacts caused by their production activities can be improved or prevented.

Suggested Citation

  • Parisa Rafiaani & Zoumpolia Dikopoulou & Miet Dael & Tom Kuppens & Hossein Azadi & Philippe Lebailly & Steven Passel, 2020. "Identifying Social Indicators for Sustainability Assessment of CCU Technologies: A Modified Multi-criteria Decision Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 15-44, January.
  • Handle: RePEc:spr:soinre:v:147:y:2020:i:1:d:10.1007_s11205-019-02154-4
    DOI: 10.1007/s11205-019-02154-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-019-02154-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-019-02154-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Bofinger & Timo Wollmershäuser, 2003. "Managed Floating as a Monetary Policy Strategy," Economic Change and Restructuring, Springer, vol. 36(2), pages 81-109, June.
    2. Turcksin, Laurence & Macharis, Cathy & Lebeau, Kenneth & Boureima, Faycal & Van Mierlo, Joeri & Bram, Svend & De Ruyck, Jacques & Mertens, Lara & Jossart, Jean-Marc & Gorissen, Leen & Pelkmans, Luc, 2011. "A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium," Energy Policy, Elsevier, vol. 39(1), pages 200-214, January.
    3. Colodel, Cecilia Makishi & Kupfer, Thilo & Barthel, Leif-Patrik & Albrecht, Stefan, 2009. "R&D decision support by parallel assessment of economic, ecological and social impact -- Adipic acid from renewable resources versus adipic acid from crude oil," Ecological Economics, Elsevier, vol. 68(6), pages 1599-1604, April.
    4. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    5. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    6. J P C Kleijnen & M T Smits, 2003. "Performance metrics in supply chain management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 507-514, May.
    7. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    9. Michael Kühnen & Rüdiger Hahn, 2017. "Indicators in Social Life Cycle Assessment: A Review of Frameworks, Theories, and Empirical Experience," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1547-1565, December.
    10. Bruhn, Thomas & Naims, Henriette & Olfe-Kräutlein, Barbara, 2016. "Separating the debate on CO2 utilisation from carbon capture and storage," Environmental Science & Policy, Elsevier, vol. 60(C), pages 38-43.
    11. Dorli Harms & Erik G. Hansen & Stefan Schaltegger, 2013. "Strategies in Sustainable Supply Chain Management: An Empirical Investigation of Large German Companies," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 20(4), pages 205-218, July.
    12. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi, 2014. "Investigating the priority of market participants for low emission generation entry into the Australian grid," Energy, Elsevier, vol. 71(C), pages 445-455.
    13. Cory Searcy, 2012. "Corporate Sustainability Performance Measurement Systems: A Review and Research Agenda," Journal of Business Ethics, Springer, vol. 107(3), pages 239-253, May.
    14. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    15. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
    16. Prahlada, 2003. "Knowledge management in long gestation projects," International Journal of Information Technology and Management, Inderscience Enterprises Ltd, vol. 2(3), pages 237-250.
    17. Rafiaani, Parisa & Kuppens, Tom & Dael, Miet Van & Azadi, Hossein & Lebailly, Philippe & Passel, Steven Van, 2018. "Social sustainability assessments in the biobased economy: Towards a systemic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1839-1853.
    18. Stefan Felder, 2003. "Managed Care: Low Reputation but Most Effective," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 1(03), pages 15-19, October.
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    20. Purwanto, 2003. "Status and management of the Java sea fisheries," Monographs, The WorldFish Center, number 37760, April.
    21. Jonas Agell, 2004. "Why are Small Firms Different? Managers’ Views," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(3), pages 437-452, October.
    22. Seksan Papong & Norihiro Itsubo & Pomthong Malakul & Masanori Shukuya, 2015. "Development of the Social Inventory Database in Thailand Using Input–Output Analysis," Sustainability, MDPI, vol. 7(6), pages 1-30, June.
    23. Dempster, M. A. H. & Germano, M. & Medova, E. A. & Villaverde, M., 2003. "Global Asset Liability Management," British Actuarial Journal, Cambridge University Press, vol. 9(1), pages 137-195, April.
    24. repec:ces:ifodic:v:1:y:2003:i:3:p:14567910 is not listed on IDEAS
    25. Henrikke Baumann & Rickard Arvidsson & Hui Tong & Ying Wang, 2013. "Does the Production of an Airbag Injure more People than the Airbag Saves in Traffic?," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 517-527, August.
    26. Stefan Felder, 2003. "Managed Care: Low Reputation but Most Effective," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 1(3), pages 15-19, October.
    27. Gnansounou, Edgard, 2011. "Assessing the sustainability of biofuels: A logic-based model," Energy, Elsevier, vol. 36(4), pages 2089-2096.
    28. Buchholz, Thomas & Rametsteiner, Ewald & Volk, Timothy A. & Luzadis, Valerie A., 2009. "Multi Criteria Analysis for bioenergy systems assessments," Energy Policy, Elsevier, vol. 37(2), pages 484-495, February.
    29. Baland, Jean-Marie & Platteau, Jean-Philippe, 2003. "Economics of common property management regimes," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 4, pages 127-190, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chavosh Nejad, Mohammad & Mansour, Saeed & Karamipour, Azita, 2021. "An AHP-based multi-criteria model for assessment of the social sustainability of technology management process: A case study in banking industry," Technology in Society, Elsevier, vol. 65(C).
    2. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Chayada Kanokphanvanich & Wanchai Rattanawong & Varin Vongmanee, 2023. "A New Model for a Sustainable Healthcare Supply Chain Prioritizes Patient Safety: Using the Fuzzy Delphi Method to Identify Healthcare Workers’ Perspectives," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    4. Flávio Mattos & João Luiz Calmon, 2023. "Social Life Cycle Assessment in Municipal Solid Waste Management Systems with Contribution of Waste Pickers: Literature Review and Proposals for New Studies," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    5. R. Rajesh, 2023. "Grey Markov Models for Predicting the Social Sustainability Performances of Firms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 297-351, August.
    6. Carlos Serrano-Cinca & Yolanda Fuertes-Callén & Beatriz Cuellar-Fernández, 2021. "Managing for Stakeholders Using Multiple-Criteria Decision-Making Techniques," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(2), pages 581-601, September.
    7. Parolin, Giácomo & McAloone, Tim C. & Pigosso, Daniela C.A., 2024. "How can technology assessment tools support sustainable innovation? A systematic literature review and synthesis," Technovation, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Kügemann & Heracles Polatidis, 2019. "Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles: A Systematic Review and Classification of the Literature," Energies, MDPI, vol. 13(1), pages 1-21, December.
    2. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    3. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    4. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    5. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    6. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    7. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    9. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    10. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    11. Scott, James A. & Ho, William & Dey, Prasanta K., 2013. "Strategic sourcing in the UK bioenergy industry," International Journal of Production Economics, Elsevier, vol. 146(2), pages 478-490.
    12. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    13. Gallardo-Vázquez, Dolores & Sánchez-Hernández, María Isabel & Corchuelo-Martinez-Azua, María Beatriz, 2013. "Validación de un instrumento de medida para la relación entre la orientación a la responsabilidad social corporativa y otras variables estratégicas de la empresa," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 16(1), pages 11-23.
    14. Pasquale Marcello Falcone & Enrica Imbert, 2018. "Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    15. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    16. Sadaat Ali Yawar & Stefan Seuring, 2017. "Management of Social Issues in Supply Chains: A Literature Review Exploring Social Issues, Actions and Performance Outcomes," Journal of Business Ethics, Springer, vol. 141(3), pages 621-643, March.
    17. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    18. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    19. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    20. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:147:y:2020:i:1:d:10.1007_s11205-019-02154-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.