IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v71y2014icp445-455.html
   My bibliography  Save this article

Investigating the priority of market participants for low emission generation entry into the Australian grid

Author

Listed:
  • Hasan, Kazi Nazmul
  • Saha, Tapan Kumar
  • Eghbal, Mehdi

Abstract

Environment friendly policies and emission pricing schemes necessitate the integration of more and more renewable power into electricity grids. However, generation entry and transmission network development in a deregulated market depends on the cost and benefit of a project, where the system/market operator eventually decides the feasibility of investment. In this process, the priorities of market participants are overlooked in some cases. This paper investigates the preferences of market participants in evaluating renewable generation entry to the Australian National Electricity Market (NEM). The priorities of market participants have been investigated through a Multi-Attribute Decision Making (MADM) approach. The TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) algorithm is used to rank the preferences. Optimal Power Flow (OPF) and economic optimization of the Queensland network of the Australian NEM have been simulated in PSS/E and the MATLAB/MatPower software platform. Simulation studies confirm that in the current scenario, gas fired power plants near to the grid will lead in the generation portfolio due to their low lead time, lower investment and dispatchability. Remotely located wind and geothermal power would only be competitive with the existing LRET (Large scale Renewable Energy Target) payments along with very high carbon emission prices.

Suggested Citation

  • Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi, 2014. "Investigating the priority of market participants for low emission generation entry into the Australian grid," Energy, Elsevier, vol. 71(C), pages 445-455.
  • Handle: RePEc:eee:energy:v:71:y:2014:i:c:p:445-455
    DOI: 10.1016/j.energy.2014.04.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400526X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huva, Robert & Dargaville, Roger & Caine, Simon, 2012. "Prototype large-scale renewable energy system optimisation for Victoria, Australia," Energy, Elsevier, vol. 41(1), pages 326-334.
    2. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    3. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    4. MacGill, Iain, 2010. "Electricity market design for facilitating the integration of wind energy: Experience and prospects with the Australian National Electricity Market," Energy Policy, Elsevier, vol. 38(7), pages 3180-3191, July.
    5. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    6. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    7. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    8. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi & Chattopadhyay, Deb, 2013. "Review of transmission schemes and case studies for renewable power integration into the remote grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 568-582.
    9. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Chattopadhyay, Deb & Eghbal, Mehdi, 2014. "Benefit-based expansion cost allocation for large scale remote renewable power integration into the Australian grid," Applied Energy, Elsevier, vol. 113(C), pages 836-847.
    10. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faber, Isaac & Lane, William & Pak, Wayne & Prakel, Mary & Rocha, Cheyne & Farr, John V., 2014. "Micro-energy markets: The role of a consumer preference pricing strategy on microgrid energy investment," Energy, Elsevier, vol. 74(C), pages 567-575.
    2. Parisa Rafiaani & Zoumpolia Dikopoulou & Miet Dael & Tom Kuppens & Hossein Azadi & Philippe Lebailly & Steven Passel, 2020. "Identifying Social Indicators for Sustainability Assessment of CCU Technologies: A Modified Multi-criteria Decision Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 15-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    3. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    4. Molyneaux, Lynette & Froome, Craig & Wagner, Liam & Foster, John, 2013. "Australian power: Can renewable technologies change the dominant industry view?," Renewable Energy, Elsevier, vol. 60(C), pages 215-221.
    5. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    6. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    7. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    8. Nolan, Tahlia, 2024. "Is pivoting offshore the right policy for achieving decarbonisation in the state of Victoria, Australia's electricity sector?," Energy Policy, Elsevier, vol. 190(C).
    9. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    10. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    11. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    12. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    13. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    14. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    15. Luigi Cirocco & Martin Belusko & Frank Bruno & John Boland & Peter Pudney, 2014. "Optimisation of Storage for Concentrated Solar Power Plants," Challenges, MDPI, vol. 5(2), pages 1-31, December.
    16. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    17. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    18. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    19. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:71:y:2014:i:c:p:445-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.