IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v19y2002i2p431-447.html
   My bibliography  Save this article

Acyclic sets of linear orders: A progress report

Author

Listed:
  • Peter C. Fishburn

    (AT&T Shannon Laboratory, Florham Park, NJ 07932, USA)

Abstract

Let f(n) be the maximum cardinality of an acyclic set of linear orders on {1, 2, \dots , n}. It is known that f(3)=4, f(4)=9, f(5)=20, and that all maximum-cardinality acyclic sets for n\leq 5 are constructed by an "alternating scheme". We outline a proof that this scheme is optimal for n=6, where f (6)=45. It is known for large n that f (n) >(2.17)n and that no maximum-cardinality acyclic set conforms to the alternating scheme. Ran Raz recently proved that f (n) 0 and all n. We conjecture that f (n + m)\leqf (n + 1) f (m + 1) for n , m\geq 1, which would imply f (n)

Suggested Citation

  • Peter C. Fishburn, 2002. "Acyclic sets of linear orders: A progress report," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(2), pages 431-447.
  • Handle: RePEc:spr:sochwe:v:19:y:2002:i:2:p:431-447
    Note: Received: 12 April 2000/Accepted: 4 December 2000
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00355/papers/2019002/20190431.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Peng, 2020. "Random assignments on sequentially dichotomous domains," Games and Economic Behavior, Elsevier, vol. 121(C), pages 565-584.
    2. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2020. "Arrow on domain conditions: a fruitful road to travel," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(2), pages 237-258, March.
    3. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    4. Clemens Puppe & Arkadii Slinko, 2019. "Condorcet domains, median graphs and the single-crossing property," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(1), pages 285-318, February.
    5. Alexander Karpov & Arkadii Slinko, 2023. "Constructing large peak-pit Condorcet domains," Theory and Decision, Springer, vol. 94(1), pages 97-120, January.
    6. Craven, John, 2024. "Aggregation of ranked categories," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 27-33.
    7. Gilbert Laffond & Jean Lainé, 2014. "Triple-consistent social choice and the majority rule," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 784-799, July.
    8. Slinko, Arkadii, 2019. "Condorcet domains satisfying Arrow’s single-peakedness," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 166-175.
    9. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    10. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.
    11. Alexander Karpov & Klas Markstrom & S{o}ren Riis & Bei Zhou, 2023. "Bipartite peak-pit domains," Papers 2308.02817, arXiv.org, revised Jan 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:19:y:2002:i:2:p:431-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.