IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v84y2019icp166-175.html
   My bibliography  Save this article

Condorcet domains satisfying Arrow’s single-peakedness

Author

Listed:
  • Slinko, Arkadii

Abstract

Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation of any profile with an odd number of voters is transitive. Maximal Condorcet domains historically have attracted a special attention. We study maximal Condorcet domains that satisfy Arrow’s single-peakedness which is more general than Black’s single-peakedness. We show that all maximal Black’s single-peaked domains on the set of m alternatives are isomorphic but we found a rich variety of maximal Arrow’s single-peaked domains. We discover their recursive structure, prove that all of them have cardinality 2m−1, and characterise them by two conditions: connectedness and minimal richness. We also classify Arrow’s single-peaked Condorcet domains for m≤5 alternatives.

Suggested Citation

  • Slinko, Arkadii, 2019. "Condorcet domains satisfying Arrow’s single-peakedness," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 166-175.
  • Handle: RePEc:eee:mateco:v:84:y:2019:i:c:p:166-175
    DOI: 10.1016/j.jmateco.2019.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406819300874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2019.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), 2009. "The Mathematics of Preference, Choice and Order," Studies in Choice and Welfare, Springer, number 978-3-540-79128-7, July.
    2. Peter C. Fishburn, 2002. "Acyclic sets of linear orders: A progress report," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(2), pages 431-447.
    3. Gabrielle Demange, 2012. "Majority relation and median representative ordering," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(1), pages 95-109, March.
    4. Bernard Monjardet, 2006. "Condorcet domains and distributive lattices," Post-Print halshs-00119141, HAL.
    5. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    6. Partha Dasgupta & Eric Maskin, 2008. "On The Robustness of Majority Rule," Journal of the European Economic Association, MIT Press, vol. 6(5), pages 949-973, September.
    7. repec:hal:pseose:halshs-00670854 is not listed on IDEAS
    8. Peter Fishburn, 1996. "Acyclic sets of linear orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(1), pages 113-124.
    9. Bernard Monjardet, 2009. "Acyclic Domains of Linear Orders: A Survey," Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 139-160, Springer.
    10. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-330, March.
    11. Puppe, Clemens & Slinko, Arkadii, 2016. "Condorcet domains, median graphs and the single-crossing property," Working Paper Series in Economics 92, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    12. John Craven, 1996. "Majority-consistent preference orderings," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(3), pages 259-267.
    13. Miguel Ballester & Guillaume Haeringer, 2011. "A characterization of the single-peaked domain," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(2), pages 305-322, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    2. Puppe, Clemens & Slinko, Arkadii, 2024. "Maximal Condorcet domains. A further progress report," Games and Economic Behavior, Elsevier, vol. 145(C), pages 426-450.
    3. Alexander Karpov & Arkadii Slinko, 2023. "Constructing large peak-pit Condorcet domains," Theory and Decision, Springer, vol. 94(1), pages 97-120, January.
    4. Clemens Puppe & Arkadii Slinko, 2019. "Condorcet domains, median graphs and the single-crossing property," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(1), pages 285-318, February.
    5. Li, Guanhao, 2023. "A classification of peak-pit maximal Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 42-57.
    6. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2021. "Towards a classification of maximal peak-pit Condorcet domains," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 191-202.
    7. Puppe, Clemens & Slinko, Arkadii, 2022. "Maximal Condorcet domains: A further progress report," Working Paper Series in Economics 159, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    8. Li, Guanhao & Puppe, Clemens & Slinko, Arkadii, 2020. "Towards a classification of maximal peak-pit Condorcet domains," Working Paper Series in Economics 144, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    9. Alexander Karpov, 2019. "On the Number of Group-Separable Preference Profiles," Group Decision and Negotiation, Springer, vol. 28(3), pages 501-517, June.
    10. Bhattacharya, Mihir & Gravel, Nicolas, 2021. "Is the preference of the majority representative ?," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 87-94.
    11. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    12. Tanguiane, Andranick S., 2022. "Analysis of the 2021 Bundestag elections. 2/4. Political spectrum," Working Paper Series in Economics 152, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    13. Edith Elkind & Piotr Faliszewski & Piotr Skowron, 2020. "A characterization of the single-peaked single-crossing domain," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(1), pages 167-181, January.
    14. Ping Zhan, 2019. "A simple construction of complete single-peaked domains by recursive tiling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 477-488, December.
    15. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.
    16. Smeulders, B., 2018. "Testing a mixture model of single-peaked preferences," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 101-113.
    17. Barberà, Salvador & Moreno, Bernardo, 2011. "Top monotonicity: A common root for single peakedness, single crossing and the median voter result," Games and Economic Behavior, Elsevier, vol. 73(2), pages 345-359.
    18. Gabrielle Demange, 2017. "The stability of group formation," Revue d'économie politique, Dalloz, vol. 127(4), pages 495-516.
    19. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2020. "Arrow on domain conditions: a fruitful road to travel," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(2), pages 237-258, March.
    20. Liu, Peng & Zeng, Huaxia, 2019. "Random assignments on preference domains with a tier structure," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 176-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:84:y:2019:i:c:p:166-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.