IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i2d10.1007_s43069-024-00305-z.html
   My bibliography  Save this article

Crisscross Team Game Algorithm for Economic-Emission Power Dispatch Problem with Multiple Fuel Options

Author

Listed:
  • P. S. Bhullar

    (Sant Longowal Institute of Engineering and Technology, Longowal)

  • J. S. Dhillon

    (Sant Longowal Institute of Engineering and Technology, Longowal)

  • R. K. Garg

    (Sant Longowal Institute of Engineering and Technology, Longowal)

Abstract

This paper proposes a crisscross team game algorithm (CTGA) to solve single and multi-objective optimization problems. CTGA integrates dual crisscross mechanisms orthogonally with operators of the team game algorithm (TGA) to balance exploration and exploitation. The proposed amalgamation enhances the search capabilities and convergence behaviour of TGA. The economic-emission power dispatch (EEPD) problem of thermal units with multiple fuel options and the crucial operational limitations of an electric power system is successfully solved using the proposed algorithm. The objectives, operating cost, and emission of pollutants are combined by the non-interactive technique exploiting the price penalty method. On the basis of the replacement technique and proportional power sharing of the unmet load demand, feasible solutions are discovered heuristically. The applicability of the proposed algorithm is verified on unconstrained (viz. unimodal and multimodal) standard benchmark optimization problems, along with five electric power test problems having real-world constraints, including restricted operation zones and ramp-rate limits. CTGA’s superior performance over TGA in experimental evaluations and graphical representations explicitly demonstrates the necessity of the proposed amalgamation. The Wilcoxon signed-rank test and Friedman test illustrate CTGA’s eminence over other competing algorithms. The suggested algorithm has fewer sensitive parameters to tune.

Suggested Citation

  • P. S. Bhullar & J. S. Dhillon & R. K. Garg, 2024. "Crisscross Team Game Algorithm for Economic-Emission Power Dispatch Problem with Multiple Fuel Options," SN Operations Research Forum, Springer, vol. 5(2), pages 1-60, June.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00305-z
    DOI: 10.1007/s43069-024-00305-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00305-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00305-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Xin & Zou, Dexuan & Duan, Na & Zhang, Qiang, 2019. "An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch," Energy, Elsevier, vol. 186(C).
    2. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    3. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    4. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xu, 2020. "Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects," Energy, Elsevier, vol. 203(C).
    2. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    3. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    4. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    5. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.
    7. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    8. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    9. Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
    10. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    11. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    12. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    13. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    14. Rajakumar, R. & Sekaran, Kaushik & Hsu, Ching-Hsien & Kadry, Seifedine, 2021. "Accelerated grey wolf optimization for global optimization problems," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    15. Mengqi Zhao & Xiaoling Wang & Jia Yu & Lei Bi & Yao Xiao & Jun Zhang, 2020. "Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm," Energies, MDPI, vol. 13(1), pages 1-17, January.
    16. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    17. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    18. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    19. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    20. Griese, Martin & Hoffarth, Marc Philippe & Schneider, Jan & Schulte, Thomas, 2019. "Hardware-in-the-Loop simulation of an optimized energy management incorporating an experimental biocatalytic methanation reactor," Energy, Elsevier, vol. 181(C), pages 77-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00305-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.