IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i2d10.1007_s43069-023-00220-9.html
   My bibliography  Save this article

Preprocessing to Reduce Vehicle Capacity for Routing Problems

Author

Listed:
  • Twan Dollevoet

    (Erasmus University Rotterdam)

  • Remy Spliet

    (Erasmus University Rotterdam)

Abstract

We provide a preprocessing method to reduce the vehicle capacity for instances of the capacitated vehicle routing problem. This improves the LP bound of many formulations of the capacitated vehicle routing problem. It also speeds up common algorithms for which the computation time depends on the vehicle capacity. Our simulation experiments suggest that, perhaps surprisingly, often the vehicle capacity is very tight in the sense that it cannot be reduced by much.

Suggested Citation

  • Twan Dollevoet & Remy Spliet, 2023. "Preprocessing to Reduce Vehicle Capacity for Routing Problems," SN Operations Research Forum, Springer, vol. 4(2), pages 1-7, June.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00220-9
    DOI: 10.1007/s43069-023-00220-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00220-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00220-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letchford, Adam N. & Salazar-González, Juan-José, 2015. "Stronger multi-commodity flow formulations of the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 730-738.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    3. Dollevoet, T.A.B. & Munari, P. & Spliet, R., 2020. "A p-step formulation for the capacitated vehicle routing problem," Econometric Institute Research Papers EI2020-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dollevoet, T.A.B. & Pecin, D. & Spliet, R., 2020. "The path programming problem and a partial path relaxation," Econometric Institute Research Papers EI-2020-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Dollevoet, T.A.B. & Munari, P. & Spliet, R., 2020. "A p-step formulation for the capacitated vehicle routing problem," Econometric Institute Research Papers EI2020-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Bektaş, Tolga & Gouveia, Luis & Martínez-Sykora, Antonio & Salazar-González, Juan-José, 2019. "Balanced vehicle routing: Polyhedral analysis and branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 273(2), pages 452-463.
    4. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    5. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    6. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    7. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    10. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    11. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    12. Christian Tilk & Nicola Bianchessi & Michael Drexl & Stefan Irnich & Frank Meisel, 2015. "Branch-and-Price for the Active-Passive Vehicle-Routing Problem," Working Papers 1513, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    14. Michiel A. J. uit het Broek & Albert H. Schrotenboer & Bolor Jargalsaikhan & Kees Jan Roodbergen & Leandro C. Coelho, 2021. "Asymmetric Multidepot Vehicle Routing Problems: Valid Inequalities and a Branch-and-Cut Algorithm," Operations Research, INFORMS, vol. 69(2), pages 380-409, March.
    15. Drakos, Anastasios & Moratis, Georgios, 2024. "The impact of COVID-19 on sovereign contagion," Journal of Financial Stability, Elsevier, vol. 70(C).
    16. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    17. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    18. Maria Fleischer Fauske & Carlo Mannino & Paolo Ventura, 2020. "Generalized Periodic Vehicle Routing and Maritime Surveillance," Transportation Science, INFORMS, vol. 54(1), pages 164-183, January.
    19. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    20. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00220-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.