IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i2p530-543.html
   My bibliography  Save this article

Enhanced Branch-Cut-and-Price algorithm for heterogeneous fleet vehicle routing problems

Author

Listed:
  • Pessoa, Artur
  • Sadykov, Ruslan
  • Uchoa, Eduardo

Abstract

This paper considers a family of Vehicle Routing Problem (VRP) variants that generalize the classical Capacitated VRP by taking into account the possibility that vehicles differ by capacity, costs, depot allocation, or even by the subset of customers that they can visit. This work proposes a Branch-Cut-and-Price algorithm that adapts advanced features found in the best performing exact algorithms for homogeneous fleet VRPs. The original contributions include: (i) the use of Extended Capacity Cuts, defined over a pseudo-polynomially large extended formulation, together with Rank-1 Cuts, defined over the Set Partitioning Formulation; (ii) the concept of vehicle-type dependent memory for Rank-1 Cuts; and (iii) a new family of lifted Extended Capacity Cuts that takes advantage of the vehicle-type dependent route enumeration. The algorithm was extensively tested in instances of the literature and was shown to be significantly better than previous exact algorithms, finding optimal solutions for many instances with up to 200 customers and also for some larger instances. A new set of benchmark instances is also proposed.

Suggested Citation

  • Pessoa, Artur & Sadykov, Ruslan & Uchoa, Eduardo, 2018. "Enhanced Branch-Cut-and-Price algorithm for heterogeneous fleet vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 270(2), pages 530-543.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:530-543
    DOI: 10.1016/j.ejor.2018.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718303126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    2. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    3. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    4. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    5. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Pecin & Eduardo Uchoa, 2019. "Comparative Analysis of Capacitated Arc Routing Formulations for Designing a New Branch-Cut-and-Price Algorithm," Transportation Science, INFORMS, vol. 53(6), pages 1673-1694, November.
    2. Anirudh Subramanyam & Panagiotis P. Repoussis & Chrysanthos E. Gounaris, 2020. "Robust Optimization of a Broad Class of Heterogeneous Vehicle Routing Problems Under Demand Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 661-681, July.
    3. Artur Pessoa & Ruslan Sadykov & Eduardo Uchoa, 2021. "Solving Bin Packing Problems Using VRPSolver Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-25, June.
    4. Yu, Yang & Wang, Sihan & Wang, Junwei & Huang, Min, 2019. "A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 511-527.
    5. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    6. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    7. Michael Khachay & Yuri Ogorodnikov & Daniel Khachay, 2021. "Efficient approximation of the metric CVRP in spaces of fixed doubling dimension," Journal of Global Optimization, Springer, vol. 80(3), pages 679-710, July.
    8. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    9. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    3. Alexandre M. Florio & Richard F. Hartl & Stefan Minner, 2020. "New Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 54(4), pages 1073-1090, July.
    4. Homsi, Gabriel & Martinelli, Rafael & Vidal, Thibaut & Fagerholt, Kjetil, 2020. "Industrial and tramp ship routing problems: Closing the gap for real-scale instances," European Journal of Operational Research, Elsevier, vol. 283(3), pages 972-990.
    5. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    7. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    8. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    9. Stefan Faldum & Timo Gschwind & Stefan Irnich, 2023. "Subset-Row Inequalities and Unreachability in Path-based Formulations for Routing and Scheduling Problems," Working Papers 2310, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Queiroga, Eduardo & Frota, Yuri & Sadykov, Ruslan & Subramanian, Anand & Uchoa, Eduardo & Vidal, Thibaut, 2020. "On the exact solution of vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 287(1), pages 76-89.
    12. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    13. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    14. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    17. Frómeta Moya, Jorge Israel & Pérez Campos, Javier de Jesús, 2021. "Modelo heurístico híbrido para el ruteo vehicular y manejo de inventario en una entidad comercializadora de combustibles. || Hybrid heuristic model for inventory routing management in a fuel comercial," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 31(1), pages 363-383, June.
    18. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    19. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    20. Bakker, Steffen J. & Wang, Akang & Gounaris, Chrysanthos E., 2021. "Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning," European Journal of Operational Research, Elsevier, vol. 289(1), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:2:p:530-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.