IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v286y2020i1d10.1007_s10479-019-03342-8.html
   My bibliography  Save this article

Combined maintenance and routing optimization for large-scale sewage cleaning

Author

Listed:
  • John E. Fontecha

    (University at Buffalo)

  • Oscar O. Guaje

    (Universidad de los Andes)

  • Daniel Duque

    (Northwestern University)

  • Raha Akhavan-Tabatabaei

    (Sabanci University)

  • Juan P. Rodríguez

    (Universidad de los Andes)

  • Andrés L. Medaglia

    (Universidad de los Andes)

Abstract

The rapid population growth and the high rate of migration to urban areas impose a heavy load on the urban infrastructure. Particularly, sewerage systems are the target of disruptions, causing potential public health hazards. Although sewer systems are designed to handle some sediment and solid transport, particles can form deposits that increase the flood risk. To mitigate this risk, sewer systems require adequate maintenance scheduling, as well as ad-hoc repairs due to unforeseen disruptions. To address this challenge, we tackle the problem of planning and scheduling maintenance operations based on a deterioration pattern for a set of geographically spread sites, subject to unforeseen failures and restricted crews. We solve the problem as a two-stage maintenance-routing procedure. First, a maintenance model driven by the probability distribution of the time between failures determines the optimal time to perform maintenance operations for each site. Then, we design and apply an LP-based split procedure to route a set of crews to perform the planned maintenance operations at a near-minimum expected cost per unit time. Afterward, we adjust this routing solution dynamically to accommodate unplanned repair operations arising as a result of unforeseen failures. We validated our proposed method on a large-scale case study for sediment-related sewer blockages in Bogotá (Colombia). Our methodology reduces the cost per unit time in roughly 18% with respect to the policy used by the city’s water utility company.

Suggested Citation

  • John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
  • Handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-019-03342-8
    DOI: 10.1007/s10479-019-03342-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03342-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03342-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    2. Justin C. Goodson & Jeffrey W. Ohlmann & Barrett W. Thomas, 2013. "Rollout Policies for Dynamic Solutions to the Multivehicle Routing Problem with Stochastic Demand and Duration Limits," Operations Research, INFORMS, vol. 61(1), pages 138-154, February.
    3. Fred Blakeley & Burçin Argüello & Buyang Cao & Wolfgang Hall & Joseph Knolmajer, 2003. "Optimizing Periodic Maintenance Operations for Schindler Elevator Corporation," Interfaces, INFORMS, vol. 33(1), pages 67-79, February.
    4. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    5. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    6. López-Santana, Eduyn & Akhavan-Tabatabaei, Raha & Dieulle, Laurence & Labadie, Nacima & Medaglia, Andrés L., 2016. "On the combined maintenance and routing optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 199-214.
    7. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    8. Chih-Hsiung Wang & Ruey Huei Yeh & Peitsang Wu, 2006. "Optimal production time and number of maintenance actions for an imperfect production system under equal-interval maintenance policy," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 262-270, March.
    9. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    10. A H Shirmohammadi & C E Love & Z G Zhang, 2003. "An optimal maintenance policy for skipping imminent preventive maintenance for systems experiencing random failures," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 40-47, January.
    11. Goodson, Justin C. & Thomas, Barrett W. & Ohlmann, Jeffrey W., 2017. "A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 216-229.
    12. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    13. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    14. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    15. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    16. K K Lai & K N F Leung & B Tao & S Y Wang, 2001. "A sequential method for preventive maintenance and replacement of a repairable single-unit system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(11), pages 1276-1283, November.
    17. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    18. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    19. Shu Zhang & Jeffrey W. Ohlmann & Barrett W. Thomas, 2018. "Dynamic Orienteering on a Network of Queues," Transportation Science, INFORMS, vol. 52(3), pages 691-706, June.
    20. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    21. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2014. "A priori orienteering with time windows and stochastic wait times at customers," European Journal of Operational Research, Elsevier, vol. 239(1), pages 70-79.
    22. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huizing, Dylan & Schäfer, Guido & van der Mei, Rob D. & Bhulai, Sandjai, 2020. "The median routing problem for simultaneous planning of emergency response and non-emergency jobs," European Journal of Operational Research, Elsevier, vol. 285(2), pages 712-727.
    2. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    3. Guillermo Durán & Mario Guajardo & Facundo Gutiérrez, 2022. "Efficient referee assignment in Argentinean professional basketball leagues using operations research methods," Annals of Operations Research, Springer, vol. 316(2), pages 1121-1139, September.
    4. Seyed Hamed Ghodsi & Zhenduo Zhu & Hazem Gheith & Alan J. Rabideau & María Nariné Torres & Kevin Meindl, 2021. "Modeling the Effectiveness of Rain Barrels, Cisterns, and Downspout Disconnections for Reducing Combined Sewer Overflows in a City-Scale Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2895-2908, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    5. Zhenzhen Zhang & Zhixing Luo & Hu Qin & Andrew Lim, 2019. "Exact Algorithms for the Vehicle Routing Problem with Time Windows and Combinatorial Auction," Transportation Science, INFORMS, vol. 53(2), pages 427-441, March.
    6. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    7. Ana Maria Anaya-Arenas & Thomas Chabot & Jacques Renaud & Angel Ruiz, 2016. "Biomedical sample transportation in the province of Quebec: a case study," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 602-615, January.
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    10. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    11. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    12. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    13. Huizing, Dylan & Schäfer, Guido & van der Mei, Rob D. & Bhulai, Sandjai, 2020. "The median routing problem for simultaneous planning of emergency response and non-emergency jobs," European Journal of Operational Research, Elsevier, vol. 285(2), pages 712-727.
    14. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    15. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    16. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    17. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    18. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-019-03342-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.