IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v2y2021i4d10.1007_s43069-021-00061-4.html
   My bibliography  Save this article

Some Results on Mathematical Programs with Equilibrium Constraints

Author

Listed:
  • Bhuwan Chandra Joshi

    (Graphic Era University)

Abstract

Mathematical programs with equilibrium constraints (MPEC) are special class of constrained optimization problems. The feasible set of MPEC violates most of the standard constraint qualifications. Thus, the Karush-Kuhn-Tucker conditions are not necessarily satisfied at minimizers, and the convergence assumptions of many methods for solving constrained optimization problems are not fulfilled. Thus, it is necessary, from a theoretical and numerical point of view, to consider suitable optimality conditions for solving such optimization problems. In this paper, we show that M-stationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints and generalized invexity assumptions. Further, we formulate and study, Wolfe-type and Mond-Weir-type dual models for the MPEC and we establish weak and strong duality theorems relating to the MPEC and the two dual models under invexity and generalized invexity assumptions. The main purpose of this manuscript is to study the Mathematical programs with equilibrium constraints under the framework of differentiable generalized invex functions and to obtain optimality conditions and duality results.

Suggested Citation

  • Bhuwan Chandra Joshi, 2021. "Some Results on Mathematical Programs with Equilibrium Constraints," SN Operations Research Forum, Springer, vol. 2(4), pages 1-18, December.
  • Handle: RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00061-4
    DOI: 10.1007/s43069-021-00061-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00061-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00061-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
    2. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    3. Yogendra Pandey & Shashi Kant Mishra, 2016. "Duality for Nonsmooth Optimization Problems with Equilibrium Constraints, Using Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 694-707, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feijoo, Felipe & Das, Tapas K., 2014. "Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks," Applied Energy, Elsevier, vol. 119(C), pages 371-383.
    2. J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
    3. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    4. Acuna, Jorge A. & Zayas-Castro, Jose L. & Feijoo, Felipe, 2022. "A bilevel Nash-in-Nash model for hospital mergers: A key to affordable care," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    5. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    6. Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
    7. M.L. Flegel & C. Kanzow, 2005. "Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 595-614, March.
    8. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    9. Elias S. Helou & Sandra A. Santos & Lucas E. A. Simões, 2020. "Analysis of a New Sequential Optimality Condition Applied to Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 433-447, May.
    10. Alberto Ramos, 2019. "Two New Weak Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 566-591, November.
    11. Nguyen Huy Chieu & Gue Myung Lee, 2013. "A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 11-32, July.
    12. Na Xu & Xide Zhu & Li-Ping Pang & Jian Lv, 2018. "Improved Convergence Properties of the Relaxation Schemes of Kadrani et al. and Kanzow and Schwartz for MPEC," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
    13. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    14. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    16. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    17. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    18. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    19. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    20. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00061-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.