Predicting the daily closing price of selected shares on the Dhaka Stock Exchange using machine learning techniques
Author
Abstract
Suggested Citation
DOI: 10.1007/s43546-021-00065-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chia-Cheng Chen & Chun-Hung Chen & Ting-Yin Liu, 2020. "Investment Performance of Machine Learning: Analysis of S&P 500 Index," International Journal of Economics and Financial Issues, Econjournals, vol. 10(1), pages 59-66.
- Wun-Hua Chen & Jen-Ying Shih & Soushan Wu, 2006. "Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets," International Journal of Electronic Finance, Inderscience Enterprises Ltd, vol. 1(1), pages 49-67.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Mishra, Sasmita & Padhy, Sudarsan & Mishra, Satya Narayan & Misra, Satya Narayan, 2021. "A novel LASSO – TLBO – SVR hybrid model for an efficient portfolio construction," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
- Oscar Claveria & Enric Monte & Salvador Torra, 2015.
"“Regional Forecasting with Support Vector Regressions: The Case of Spain”,"
IREA Working Papers
201507, University of Barcelona, Research Institute of Applied Economics, revised Jan 2015.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Regional Forecasting with Support Vector Regressions: The Case of Spain”," AQR Working Papers 201506, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2015.
- Alina Barbulescu & Cristian Stefan Dumitriu, 2021. "Markov Switching Model for Financial Time Series," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 193-198, August.
- Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020.
"Artificial intelligence in asset management,"
Working Papers
20202001, Cambridge Judge Business School, University of Cambridge.
- Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
- Jasleen Kaur & Khushdeep Dharni, 2022. "Assessing efficacy of association rules for predicting global stock indices," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 49(3), pages 329-339, September.
- ?enol Emir & Hasan Din?er & Mehpare Timor, 2012. "A Stock Selection Model Based on Fundamental and Technical Analysis Variables by Using Artificial Neural Networks and Support Vector Machines," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 106-122, August.
- Bundzel, Marek & Kasanický, Tomáš & Pinčák, Richard, 2016. "Using string invariants for prediction searching for optimal parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 680-688.
- Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
- Pincak, R., 2013. "The string prediction models as invariants of time series in the forex market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6414-6426.
- Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
- Katarzyna Kryńska & Robert Ślepaczuk, 2022. "Daily and intraday application of various architectures of the LSTM model in algorithmic investment strategies on Bitcoin and the S&P 500 Index," Working Papers 2022-25, Faculty of Economic Sciences, University of Warsaw.
- Mishra, Sasmita & Padhy, Sudarsan, 2019. "An efficient portfolio construction model using stock price predicted by support vector regression," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Saerom Park & Jaewook Lee & Youngdoo Son, 2016. "Predicting Market Impact Costs Using Nonparametric Machine Learning Models," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
- Hakob GRIGORYAN, 2015. "Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(2), pages 14-23, October.
- Eva DEZSI & Ioan Alin NISTOR, 2016. "Can Deep Machine Learning Outsmart The Market? A Comparison Between Econometric Modelling And Long- Short Term Memory," Romanian Economic Business Review, Romanian-American University, vol. 11(4.1), pages 54-73, december.
- Marek Bundzel & Tomas Kasanicky & Richard Pincak, 2016. "Using String Invariants for Prediction Searching for Optimal Parameters," Papers 1606.06003, arXiv.org.
- Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
- Alina Barbulescu & Cristian Stefan Dumitriu, 2021. "Artificial Intelligence Models for Financial Time Series," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 685-690, August.
- Saeed Hajibabaei & Nematollah Hajibabaei & Seyed Mohammad Hoseini & Somaye Hajibabaei & Sajad Hajibabaei, 2014. "Tehran Stock Price Modeling and Forecasting Using Support Vector Regression (SVR) and Its Comparison with the Classic Model ARIMA," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 18(2), pages 105-130, Spring.
More about this item
Keywords
Stock market; Machine learning techniques; Regression; Linear SVR; KNN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:1:y:2021:i:4:d:10.1007_s43546-021-00065-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.