Asymptotic Normality of the Whittle Estimator in Linear Regression Models with Long Memory Errors
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1009999607588
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ko, Kyungduk & Lee, Jaechoul & Lund, Robert, 2008. "Confidence intervals for long memory regressions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1894-1902, September.
- Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.
- A. V. Ivanov & N. N. Leonenko & I. V. Orlovskyi, 2020. "On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 129-169, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
- Youndjé, É. & Vieu, P., 2006. "A note on quantile estimation for long-range dependent stochastic processes," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 109-116, January.
- Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
- Hira Koul & Donatas Surgailis & Nao Mimoto, 2015. "Minimum distance lack-of-fit tests under long memory errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(2), pages 119-143, February.
- Toshio Honda, 2013.
"Nonparametric quantile regression with heavy-tailed and strongly dependent errors,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
- Toshio Honda, 2010. "Nonparametric Quantile Regression with Heavy-Tailed and Strongly Dependent Errors," Global COE Hi-Stat Discussion Paper Series gd10-157, Institute of Economic Research, Hitotsubashi University.
- Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
- Beran, Jan & Sabzikar, Farzad & Surgailis, Donatas & Telkmann, Klaus, 2020. "On the empirical process of tempered moving averages," Statistics & Probability Letters, Elsevier, vol. 167(C).
- Mohamed Boutahar, 2006. "Limiting distribution of the least squaresestimates in polynomial regression with longmemory noises," Working Papers halshs-00409571, HAL.
- Paul Doukhan & Gabriel Lang & Donatas Surgailis & Marie-Claude Viano, 2005. "Functional Limit Theorem for the Empirical Process of a Class of Bernoulli Shifts with Long Memory," Journal of Theoretical Probability, Springer, vol. 18(1), pages 161-186, January.
- Lihong Wang, 2020. "Lack of fit test for long memory regression models," Statistical Papers, Springer, vol. 61(3), pages 1043-1067, June.
- Toshio Honda, 2009.
"Nonparametric density estimation for linear processes with infinite variance,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 413-439, June.
- Honda, Toshio & 本田, 敏雄, 2006. "Nonparametric Density Estimation for Linear Processes with Infinite Variance," Discussion Papers 2005-13, Graduate School of Economics, Hitotsubashi University.
- Beran, Jan & Feng, Yuanhua & Ghosh, Sucharita & Sibbertsen, Philipp, 2002.
"On robust local polynomial estimation with long-memory errors,"
International Journal of Forecasting, Elsevier, vol. 18(2), pages 227-241.
- Beran, Jan & Feng, Yuanhua & Gosh, Sucharita & Sibbertsen, Philipp, 2000. "On robust local polynomial estimation with long-memory errors," CoFE Discussion Papers 00/18, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Beran, Jan & Feng, Yuanhua & Ghosh, Sucharita & Sibbertsen, Philipp, 2000. "On robust local polynominal estimation with long-memory errors," Technical Reports 2000,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Toshio Honda, 2010.
"Nonparametric estimation of conditional medians for linear and related processes,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
- Honda, Toshio & 本田, 敏雄, 2007. "Nonparametric Estimation of Conditional Medians for Linear and Related Processes," Discussion Papers 2005-04, Graduate School of Economics, Hitotsubashi University.
- Koul, Hira L. & Baillie, Richard T., 2003. "Asymptotics of M-estimators in non-linear regression with long memory designs," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 237-252, February.
- Aleksandr Beknazaryan & Hailin Sang & Peter Adamic, 2023. "On the integrated mean squared error of wavelet density estimation for linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 235-254, July.
- Lorek, Paweł & Kulik, Rafał, 2014. "Empirical process of residuals for regression models with long memory errors," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 7-16.
- Li, Linyuan, 2003. "On Koul's minimum distance estimators in the regression models with long memory moving averages," Stochastic Processes and their Applications, Elsevier, vol. 105(2), pages 257-269, June.
- Hira Koul & Nao Mimoto & Donatas Surgailis, 2013. "Goodness-of-fit tests for long memory moving average marginal density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 205-224, February.
- Beran, Jan, 2006. "On location estimation for LARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1766-1782, September.
- Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
More about this item
Keywords
Moving average long memory errors; i.i.d. and long memory designs; unbounded spectral density;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:3:y:2000:i:1:p:129-147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.