IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i2p165-193.html
   My bibliography  Save this article

A goodness-of-fit test for marginal distribution of linear random fields with long memory

Author

Listed:
  • Hira Koul
  • Nao Mimoto
  • Donatas Surgailis

Abstract

This paper addresses the problem of fitting a known distribution function to the marginal distribution of a stationary long memory moving average random field observed on increasing $$\nu $$ ν -dimensional “cubic” domains when its mean $$\mu $$ μ and scale $$\sigma $$ σ are known or unknown. Using two suitable estimators of $$\mu $$ μ and a classical estimate of $$\sigma $$ σ , a modification of the Kolmogorov–Smirnov statistic is defined based on the residual empirical process and having a Cauchy-type limit distribution, independent of $$\mu ,\sigma $$ μ , σ and the long memory parameter d. Based on this result, a simple goodness-of-fit test for the marginal distribution is constructed, which does not require the estimation of d or any other underlying nuisance parameters. The result is new even for the case of time series, i.e., when $$\nu =1$$ ν = 1 . Findings of a simulation study investigating the finite sample behavior of size and power of the proposed test is also included in this paper. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:2:p:165-193
    DOI: 10.1007/s00184-015-0550-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-015-0550-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-015-0550-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hira Koul & Nao Mimoto & Donatas Surgailis, 2013. "Goodness-of-fit tests for long memory moving average marginal density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 205-224, February.
    2. K Abadir & W Distaso & L Giraitis, "undated". "Two estimators of the long-run variance," Discussion Papers 05/19, Department of Economics, University of York.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    5. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    6. Leonenko, N.N. & Sakhno, L.M., 2006. "On the Whittle estimators for some classes of continuous-parameter random processes and fields," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 781-795, April.
    7. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    8. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
    2. Surgailis, Donatas, 2020. "Scaling transition and edge effects for negatively dependent linear random fields on Z2," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7518-7546.
    3. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    4. Angela Ferretti & L. Ippoliti & P. Valentini & R. J. Bhansali, 2023. "Long memory conditional random fields on regular lattices," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    5. Paul Doukhan & Ieva Grublytė & Denys Pommeret & Laurence Reboul, 2020. "Comparing the marginal densities of two strictly stationary linear processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1419-1447, December.
    6. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    2. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    3. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    4. Mohamed Boutahar, 2006. "Limiting distribution of the least squaresestimates in polynomial regression with longmemory noises," Working Papers halshs-00409571, HAL.
    5. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    6. Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
    7. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Becker, Janis & Leschinski, Christian, 2018. "The Bias of Realized Volatility," Hannover Economic Papers (HEP) dp-642, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    10. Javier Hualde & Fabrizio Iacone, 2015. "Autocorrelation robust inference using the Daniell kernel with fixed bandwidth," Discussion Papers 15/14, Department of Economics, University of York.
    11. Wingert, Simon & Mboya, Mwasi Paza & Sibbertsen, Philipp, 2020. "Distinguishing between breaks in the mean and breaks in persistence under long memory," Economics Letters, Elsevier, vol. 193(C).
    12. Zhihao Xu & Clifford M. Hurvich, 2021. "A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation," Papers 2108.06093, arXiv.org, revised Jun 2023.
    13. Violetta Dalla & Liudas Giraitis & Hira L. Koul, 2014. "Studentizing Weighted Sums Of Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 151-172, March.
    14. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    15. Hualde, Javier & Iacone, Fabrizio, 2017. "Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes," Economics Letters, Elsevier, vol. 150(C), pages 39-43.
    16. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    17. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    18. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    19. Luis Gil-Alana, 2004. "Forecasting the real output using fractionally integrated techniques," Applied Economics, Taylor & Francis Journals, vol. 36(14), pages 1583-1589.
    20. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:2:p:165-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.