IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00409571.html
   My bibliography  Save this paper

Limiting distribution of the least squaresestimates in polynomial regression with longmemory noises

Author

Listed:
  • Mohamed Boutahar

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

We give the limiting distribution of the least squares estimator in the polynomial regression model driven by some long memory processes. We prove that with an appropriate normalization, the estimation error converges, in distribution, to a random vector which components are a mixture of stochastic integrals. These integrals are with respect to a Lebesgue measure, and can be computed recursively where the seed is a random variable which depends on the assumptions made on the noise process. The limiting distribution can be Gaussian or non Gaussian.

Suggested Citation

  • Mohamed Boutahar, 2006. "Limiting distribution of the least squaresestimates in polynomial regression with longmemory noises," Working Papers halshs-00409571, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00409571
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00409571
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00409571/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    2. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    3. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    6. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    7. Marmol, Francesc & Velasco, Carlos, 2002. "Trend stationarity versus long-range dependence in time series analysis," Journal of Econometrics, Elsevier, vol. 108(1), pages 25-42, May.
    8. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    9. Sowell, Fallaw, 1990. "The Fractional Unit Root Distribution," Econometrica, Econometric Society, vol. 58(2), pages 495-505, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Heinen, Florian & Willert, Juliane, 2011. "Monitoring a change in persistence of a long range dependent time series," Hannover Economic Papers (HEP) dp-479, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    4. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    5. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    6. Zeynel Abidin Ozdemir & Mehmet Balcilar & Aysit Tansel, 2013. "International Labour Force Participation Rates By Gender: Unit Root Or Structural Breaks?," Bulletin of Economic Research, Wiley Blackwell, vol. 65, pages 142-164, May.
    7. Mark J. Jensen, 2009. "The Long‐Run Fisher Effect: Can It Be Tested?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 221-231, February.
    8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    9. Luis A. Gil-Alana & Juan Carlos Cuestas, 2012. "A Non-linear Approach with Long Range Dependence based on Chebyshev Polynomials," Faculty Working Papers 14/12, School of Economics and Business Administration, University of Navarra.
    10. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    11. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, November.
    12. Laura Mayoral, 2005. "Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks," Economics Working Papers 956, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Sonali Das & Rangan Gupta & Patrick Kanda & Monique Reid & Christian Tipoy & Mulatu Zerihun, 2014. "Real interest rate persistence in South Africa: evidence and implications," Economic Change and Restructuring, Springer, vol. 47(1), pages 41-62, February.
    14. Juan Carlos Cuestas & Luis A. Gil-Alana & Laura Sauci, 2020. "Public finances in the EU-27: Are they sustainable?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(1), pages 181-204, February.
    15. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    16. Luis A. Gil‐Alana, 2008. "Fractional integration and structural breaks at unknown periods of time," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 163-185, January.
    17. Zeynel Abidin Ozdemir & Mehmet Balcilar & Aysit Tansel, 2013. "International Labour Force Participation Rates By Gender: Unit Root Or Structural Breaks?," Bulletin of Economic Research, Wiley Blackwell, vol. 65, pages 142-164, May.
    18. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    19. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    20. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00409571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.