IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v86y2014icp7-16.html
   My bibliography  Save this article

Empirical process of residuals for regression models with long memory errors

Author

Listed:
  • Lorek, Paweł
  • Kulik, Rafał

Abstract

We consider the residual empirical process in random design regression with long memory. We establish its limiting behaviour, showing that its rates of convergence are different from the rates of convergence for the empirical process based on (unobserved) errors.

Suggested Citation

  • Lorek, Paweł & Kulik, Rafał, 2014. "Empirical process of residuals for regression models with long memory errors," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 7-16.
  • Handle: RePEc:eee:stapro:v:86:y:2014:i:c:p:7-16
    DOI: 10.1016/j.spl.2013.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213003994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youndjé, É. & Vieu, P., 2006. "A note on quantile estimation for long-range dependent stochastic processes," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 109-116, January.
    2. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
    3. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    4. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    5. Mohamed Boutahar, 2006. "Limiting distribution of the least squaresestimates in polynomial regression with longmemory noises," Working Papers halshs-00409571, HAL.
    6. Paul Doukhan & Gabriel Lang & Donatas Surgailis & Marie-Claude Viano, 2005. "Functional Limit Theorem for the Empirical Process of a Class of Bernoulli Shifts with Long Memory," Journal of Theoretical Probability, Springer, vol. 18(1), pages 161-186, January.
    7. Lihong Wang, 2020. "Lack of fit test for long memory regression models," Statistical Papers, Springer, vol. 61(3), pages 1043-1067, June.
    8. Beran, Jan & Feng, Yuanhua & Ghosh, Sucharita & Sibbertsen, Philipp, 2002. "On robust local polynomial estimation with long-memory errors," International Journal of Forecasting, Elsevier, vol. 18(2), pages 227-241.
    9. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    10. Li, Linyuan, 2003. "On Koul's minimum distance estimators in the regression models with long memory moving averages," Stochastic Processes and their Applications, Elsevier, vol. 105(2), pages 257-269, June.
    11. Hira Koul & Nao Mimoto & Donatas Surgailis, 2013. "Goodness-of-fit tests for long memory moving average marginal density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 205-224, February.
    12. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    13. Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Stelios Arvanitis & Tassos Magdalinos, 2018. "Mildly Explosive Autoregression Under Stationary Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 892-908, November.
    15. Lihong Wang, 2004. "Asymptotics of estimates in constrained nonlinear regression with long-range dependent innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 251-264, June.
    16. Toshio Honda, 2009. "Nonparametric density estimation for linear processes with infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 413-439, June.
    17. Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
    18. Hira Koul & Donatas Surgailis & Nao Mimoto, 2015. "Minimum distance lack-of-fit tests under long memory errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(2), pages 119-143, February.
    19. Hira Koul & Donatas Surgailis, 2000. "Asymptotic Normality of the Whittle Estimator in Linear Regression Models with Long Memory Errors," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 129-147, January.
    20. Beran, Jan & Sabzikar, Farzad & Surgailis, Donatas & Telkmann, Klaus, 2020. "On the empirical process of tempered moving averages," Statistics & Probability Letters, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:86:y:2014:i:c:p:7-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.