IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v28y2012i04p838-860_00.html
   My bibliography  Save this article

Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes

Author

Listed:
  • De Gregorio, Alessandro
  • Iacus, Stefano M.

Abstract

The least absolute shrinkage and selection operator (LASSO) is a widely used statistical methodology for simultaneous estimation and variable selection. It is a shrinkage estimation method that allows one to select parsimonious models. In other words, this method estimates the redundant parameters as zero in the large samples and reduces variance of estimates. In recent years, many authors analyzed this technique from a theoretical and applied point of view. We introduce and study the adaptive LASSO problem for discretely observed multivariate diffusion processes. We prove oracle properties and also derive the asymptotic distribution of the LASSO estimator. This is a nontrivial extension of previous results by Wang and Leng (2007, Journal of the American Statistical Association, 102(479), 1039–1048) on LASSO estimation because of different rates of convergence of the estimators in the drift and diffusion coefficients. We perform simulations and real data analysis to provide some evidence on the applicability of this method.

Suggested Citation

  • De Gregorio, Alessandro & Iacus, Stefano M., 2012. "Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 28(4), pages 838-860, August.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466611000806/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    4. Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
    5. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    6. Junichiro Yoshida & Nakahiro Yoshida, 2024. "Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 711-763, October.
    7. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    8. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
    9. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    10. Junichiro Yoshida & Nakahiro Yoshida, 2024. "Penalized estimation for non-identifiable models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 765-796, October.
    11. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.