IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v27y2000i1p83-96.html
   My bibliography  Save this article

Non‐parametric Kernel Estimation of the Coefficient of a Diffusion

Author

Listed:
  • Jean Jacod

Abstract

In this work we exhibit a non‐parametric estimator of kernel type, for the diffusion coefficient when one observes a one‐dimensional diffusion process at times i/n for i = , ..., n and study its asymptotics as n←∞. When the diffusion coefficient has regularity r≥ 1, we obtain a rate 1/nr/(1+2r), both for pointwise estimation and for estimation on a compact subset of R: this is the same rate as for non‐parametric estimation of a density with i.i.d. observations.

Suggested Citation

  • Jean Jacod, 2000. "Non‐parametric Kernel Estimation of the Coefficient of a Diffusion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 83-96, March.
  • Handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:83-96
    DOI: 10.1111/1467-9469.00180
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00180
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    3. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    4. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    5. Wang, Bin & Zheng, Xu, 2022. "Testing for the presence of jump components in jump diffusion models," Journal of Econometrics, Elsevier, vol. 230(2), pages 483-509.
    6. Ruijun Bu & Jihyun Kim & Bin Wang, 2020. "Uniform and Lp Convergences of Nonparametric Estimation for Diffusion Models," Working Papers 202021, University of Liverpool, Department of Economics.
    7. Lingohr, Daniel & Müller, Gernot, 2021. "Conditionally independent increment processes for modeling electricity prices with regard to renewable power generation," Energy Economics, Elsevier, vol. 103(C).
    8. Nina Munkholt Jakobsen & Michael Sørensen, 2015. "Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval," CREATES Research Papers 2015-33, Department of Economics and Business Economics, Aarhus University.
    9. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    10. Ogawa, Shigeyoshi & Ngo, Hoang-Long, 2010. "Real-time estimation scheme for the spot cross volatility of jump diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1962-1976.
    11. León, José & Ludeña, Carenne, 2007. "Limits for weighted p-variations and likewise functionals of fractional diffusions with drift," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 271-296, March.
    12. Ignatieva, Katja & Platen, Eckhard, 2012. "Estimating the diffusion coefficient function for a diversified world stock index," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1333-1349.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:83-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.