IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v16y2013i1p29-61.html
   My bibliography  Save this article

On inference for fractional differential equations

Author

Listed:
  • Alexandra Chronopoulou
  • Samy Tindel

Abstract

Based on Malliavin calculus tools and approximation results, we show how to compute a maximum likelihood type estimator for a rather general differential equation driven by a fractional Brownian motion with Hurst parameter $$H>1/2$$ . Rates of convergence for the approximation task are provided, and numerical experiments show that our procedure leads to good results in terms of estimation. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Alexandra Chronopoulou & Samy Tindel, 2013. "On inference for fractional differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 29-61, April.
  • Handle: RePEc:spr:sistpr:v:16:y:2013:i:1:p:29-61
    DOI: 10.1007/s11203-013-9076-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-013-9076-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-013-9076-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    2. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    3. Baudoin, Fabrice & Coutin, Laure, 2007. "Operators associated with a stochastic differential equation driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 117(5), pages 550-574, May.
    4. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    5. Paolo Guasoni, 2006. "No Arbitrage Under Transaction Costs, With Fractional Brownian Motion And Beyond," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 569-582, July.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamada, Toshihiro, 2015. "A formula of small time expansion for Young SDE driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 64-72.
    2. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    3. Fabienne Comte & Nicolas Marie, 2019. "Nonparametric estimation in fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 359-382, October.
    4. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    5. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    6. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaozhong Hu & Samy Tindel, 2013. "Smooth Density for Some Nilpotent Rough Differential Equations," Journal of Theoretical Probability, Springer, vol. 26(3), pages 722-749, September.
    2. Peter Kloeden & Andreas Neuenkirch & Raffaella Pavani, 2011. "Multilevel Monte Carlo for stochastic differential equations with additive fractional noise," Annals of Operations Research, Springer, vol. 189(1), pages 255-276, September.
    3. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    4. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    5. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    6. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    7. Erik Lindström, 2007. "Estimating parameters in diffusion processes using an approximate maximum likelihood approach," Annals of Operations Research, Springer, vol. 151(1), pages 269-288, April.
    8. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    9. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    10. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    11. Niu Wei-Fang, 2013. "Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 421-438, September.
    12. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    13. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    14. Aleksandar Mijatović & Paul Schneider, 2014. "Empirical Asset Pricing with Nonlinear Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 479-506.
    15. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    16. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    17. Lubrano, Michel, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499, Juin-Sept.
    18. Dorsaf Cherif & Emmanuel Lépinette, 2023. "No-arbitrage conditions and pricing from discrete-time to continuous-time strategies," Annals of Finance, Springer, vol. 19(2), pages 141-168, June.
    19. Song, Xinyu & Wang, Yazhen, 2020. "GARCH quasi-likelihood ratios for SV model and the diffusion limit," Statistics & Probability Letters, Elsevier, vol. 165(C).
    20. Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
    21. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:16:y:2013:i:1:p:29-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.