IDEAS home Printed from https://ideas.repec.org/a/hin/jnijsa/8694365.html
   My bibliography  Save this article

Stochastic Analysis of Gaussian Processes via Fredholm Representation

Author

Listed:
  • Tommi Sottinen
  • Lauri Viitasaari

Abstract

We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

Suggested Citation

  • Tommi Sottinen & Lauri Viitasaari, 2016. "Stochastic Analysis of Gaussian Processes via Fredholm Representation," International Journal of Stochastic Analysis, Hindawi, vol. 2016, pages 1-15, July.
  • Handle: RePEc:hin:jnijsa:8694365
    DOI: 10.1155/2016/8694365
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJSA/2016/8694365.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJSA/2016/8694365.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/8694365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    2. Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
    3. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    4. Miriana Cellupica & Barbara Pacchiarotti, 2021. "Pathwise Asymptotics for Volterra Type Stochastic Volatility Models," Journal of Theoretical Probability, Springer, vol. 34(2), pages 682-727, June.
    5. Tommi Sottinen & Lauri Viitasaari, 2018. "Conditional-Mean Hedging Under Transaction Costs In Gaussian Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-15, March.
    6. Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijsa:8694365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.