IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i1d10.1007_s11192-021-04179-4.html
   My bibliography  Save this article

PatentNet: multi-label classification of patent documents using deep learning based language understanding

Author

Listed:
  • Arousha Haghighian Roudsari

    (Inha University)

  • Jafar Afshar

    (Inha University)

  • Wookey Lee

    (Inha University
    Inha University)

  • Suan Lee

    (Semyung University)

Abstract

Patent classification is an expensive and time-consuming task that has conventionally been performed by domain experts. However, the increase in the number of filed patents and the complexity of the documents make the classification task challenging. The text used in patent documents is not always written in a way to efficiently convey knowledge. Moreover, patent classification is a multi-label classification task with a large number of labels, which makes the problem even more complicated. Hence, automating this expensive and laborious task is essential for assisting domain experts in managing patent documents, facilitating reliable search, retrieval, and further patent analysis tasks. Transfer learning and pre-trained language models have recently achieved state-of-the-art results in many Natural Language Processing tasks. In this work, we focus on investigating the effect of fine-tuning the pre-trained language models, namely, BERT, XLNet, RoBERTa, and ELECTRA, for the essential task of multi-label patent classification. We compare these models with the baseline deep-learning approaches used for patent classification. We use various word embeddings to enhance the performance of the baseline models. The publicly available USPTO-2M patent classification benchmark and M-patent datasets are used for conducting experiments. We conclude that fine-tuning the pre-trained language models on the patent text improves the multi-label patent classification performance. Our findings indicate that XLNet performs the best and achieves a new state-of-the-art classification performance with respect to precision, recall, F1 measure, as well as coverage error, and LRAP.

Suggested Citation

  • Arousha Haghighian Roudsari & Jafar Afshar & Wookey Lee & Suan Lee, 2022. "PatentNet: multi-label classification of patent documents using deep learning based language understanding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 207-231, January.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04179-4
    DOI: 10.1007/s11192-021-04179-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04179-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04179-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaobo Li & Jie Hu & Yuxin Cui & Jianjun Hu, 2018. "DeepPatent: patent classification with convolutional neural networks and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 721-744, November.
    2. Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
    3. Jie Chen & Jialin Chen & Shu Zhao & Yanping Zhang & Jie Tang, 2020. "Exploiting word embedding for heterogeneous topic model towards patent recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2091-2108, December.
    4. Jie Hu & Shaobo Li & Jianjun Hu & Guanci Yang, 2018. "A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    5. Juan Carlos Gomez, 2019. "Analysis of the effect of data properties in automated patent classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1239-1268, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liyuan Zhang & Wei Liu & Yufei Chen & Xiaodong Yue, 2022. "Reliable Multi-View Deep Patent Classification," Mathematics, MDPI, vol. 10(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Ascione, Grazia Sveva, 2023. "Technological diversity to address complex challenges: the contribution of American universities to sdgs," MPRA Paper 119452, University Library of Munich, Germany.
    3. Doina Caragea & Theodor Cojoianu & Mihai Dobri & Andreas Hoepner & Oana Peia & Davide Romelli, 2024. "Competition and Innovation in the Financial Sector: Evidence from the Rise of FinTech Start-ups," Journal of Financial Services Research, Springer;Western Finance Association, vol. 65(1), pages 103-140, February.
    4. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    5. Liyuan Zhang & Wei Liu & Yufei Chen & Xiaodong Yue, 2022. "Reliable Multi-View Deep Patent Classification," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    6. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    7. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    8. Anqi Ma & Yu Liu & Xiujuan Xu & Tao Dong, 2021. "A deep-learning based citation count prediction model with paper metadata semantic features," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6803-6823, August.
    9. Manuel A. Vázquez & Jorge Pereira-Delgado & Jesús Cid-Sueiro & Jerónimo Arenas-García, 2022. "Validation of scientific topic models using graph analysis and corpus metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5441-5458, September.
    10. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Yang, Guancan & Xu, Haiyun, 2022. "A deep learning based method benefiting from characteristics of patents for semantic relation classification," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Jeon, Eunji & Yoon, Naeun & Sohn, So Young, 2023. "Exploring new digital therapeutics technologies for psychiatric disorders using BERTopic and PatentSBERTa," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    12. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    13. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    14. Ting Xiong & Liang Zhou & Ying Zhao & Xiaojuan Zhang, 2022. "Mining semantic information of co-word network to improve link prediction performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 2981-3004, June.
    15. Peng Shao & Runhua Tan & Qingjin Peng & Wendan Yang & Fang Liu, 2023. "An Integrated Method to Acquire Technological Evolution Potential to Stimulate Innovative Product Design," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    16. Patricia Ordóñez de Pablos & Miltiadis Lytras, 2018. "Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness," Sustainability, MDPI, vol. 10(6), pages 1-7, June.
    17. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    18. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2021. "Improving the Discovery of Technological Opportunities Using Patent Classification Based on Explainable Neural Networks," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 402-409.
    19. Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
    20. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04179-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.