A comparative study of abstractive and extractive summarization techniques to label subgroups on patent dataset
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-020-03732-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
- Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
- Juan Carlos Gomez, 2019. "Analysis of the effect of data properties in automated patent classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1239-1268, December.
- Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
- Camus, Caterina & Brancaleon, Riccardo, 2003. "Intellectual assets management: from patents to knowledge," World Patent Information, Elsevier, vol. 25(2), pages 155-159, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng Liu & Jialing Zhang & Tingting Qin & Yanwen Qu & Yun Li, 2022. "One-to-many comparative summarization for patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1969-1993, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Curci, Ylenia & Mongeau Ospina, Christian A., 2016.
"Investigating biofuels through network analysis,"
Energy Policy, Elsevier, vol. 97(C), pages 60-72.
- Ylenia Curci & Christian Mongeau Ospina, 2016. "Investigating biofuels through network analysis," Post-Print hal-01725383, HAL.
- Mario Corona & Youngjung Geum & Sungjoo Lee, 2017. "Patterns of Protecting Both Technological and Nontechnological Innovation for Service Offerings: Case of the Video-Game Industry," Service Science, INFORMS, vol. 9(3), pages 192-204, September.
- Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
- Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
- Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
- Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
- Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
- Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
- Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
- Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
- Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
- Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
- Kulkarni, Shruti, 2020. "Using Machine Learning to Analyze Climate Change Technology Transfer (CCTT)," SocArXiv zyb3j, Center for Open Science.
- Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
- Marcin Chlebus & Maciej Stefan Świtała, 2020. "So close and so far. Finding similar tendencies in econometrics and machine learning papers. Topic models comparison," Working Papers 2020-16, Faculty of Economic Sciences, University of Warsaw.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
- Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
- Emad Mohamed & Sayed A. Mostafa, 2019. "Computing Happiness from Textual Data," Stats, MDPI, vol. 2(3), pages 1-24, July.
More about this item
Keywords
Computational intelligence; Knowledge representation; Information systems; Automatic text summarization; Patent datasets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03732-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.