One-to-many comparative summarization for patents
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-022-04307-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cinthia M. Souza & Magali R. G. Meireles & Paulo E. M. Almeida, 2021. "A comparative study of abstractive and extractive summarization techniques to label subgroups on patent dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 135-156, January.
- Lea Helmers & Franziska Horn & Franziska Biegler & Tim Oppermann & Klaus-Robert Müller, 2019. "Automating the search for a patent’s prior art with a full text similarity search," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
- Daniel E. Ho & Lisa Larrimore Ouellette, 2020. "Improving Scientific Judgments in Law and Government: A Field Experiment of Patent Peer Review," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(2), pages 190-223, June.
- Kong, Nancy & Dulleck, Uwe & Jaffe, Adam B. & Sun, Shupeng & Vajjala, Sowmya, 2023.
"Linguistic metrics for patent disclosure: Evidence from university versus corporate patents,"
Research Policy, Elsevier, vol. 52(2).
- Nancy Kong & Uwe Dulleck & Adam B. Jaffe & Shupeng Sun & Sowmya Vajjala, 2020. "Linguistic Metrics for Patent Disclosure: Evidence from University Versus Corporate Patents," NBER Working Papers 27803, National Bureau of Economic Research, Inc.
- Nancy Kong & Uwe Dulleck & Adam Jaffe & Shupeng Sun & Sowmya Vajjala, 2020. "Linguistic Metrics for Patent Disclosure: Evidence from University versus Corporate Patents," CESifo Working Paper Series 8571, CESifo.
- Jie Chen & Jialin Chen & Shu Zhao & Yanping Zhang & Jie Tang, 2020. "Exploiting word embedding for heterogeneous topic model towards patent recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2091-2108, December.
- Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
More about this item
Keywords
Patent comparison; Essential technical feature; Semantic dependency tree; Feature-patent relevance graph;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:4:d:10.1007_s11192-022-04307-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.