Author
Listed:
- Yan Yan
- Xu-Cheng Yin
- Chun Yang
- Sujian Li
- Bo-Wen Zhang
Abstract
Deep learning techniques, e.g., Convolutional Neural Networks (CNNs), have been explosively applied to the research in the fields of information retrieval and natural language processing. However, few research efforts have addressed semantic indexing with deep learning. The use of semantic indexing in the biomedical literature has been limited for several reasons. For instance, MEDLINE citations contain a large number of semantic labels from automatically annotated MeSH terms, and for a great deal of the literature, only the information of the title and the abstract is readily available. In this paper, we propose a Boltzmann Convolutional neural network framework (B-CNN) for biomedicine semantic indexing. In our hybrid learning framework, the CNN can adaptively deal with features of documents that have sequence relationships, and can capture context information accordingly; the Deep Boltzmann Machine (DBM) merges global (the entity in each document) and local information through its training with undirected connections. Additionally, we have designed a hierarchical coarse to fine style indexing structure for learning and classifying documents, and a novel feature extension approach with word sequence embedding and Wikipedia categorization. Comparative experiments were conducted for semantic indexing of biomedical abstract documents; these experiments verified the encouraged performance of our B-CNN model.
Suggested Citation
Yan Yan & Xu-Cheng Yin & Chun Yang & Sujian Li & Bo-Wen Zhang, 2018.
"Biomedical literature classification with a CNNs-based hybrid learning network,"
PLOS ONE, Public Library of Science, vol. 13(7), pages 1-31, July.
Handle:
RePEc:plo:pone00:0197933
DOI: 10.1371/journal.pone.0197933
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.