IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v121y2019i3d10.1007_s11192-019-03250-5.html
   My bibliography  Save this article

Characterizing human summarization strategies for text reuse and transformation in literature review writing

Author

Listed:
  • Kokil Jaidka

    (Nanyang Technological University)

  • Christopher S. G. Khoo

    (Nanyang Technological University)

  • Jin-Cheon Na

    (Nanyang Technological University)

Abstract

Citations are useful signals of information salience, but little research has identified the patterns of information selection, transformation, and organization that they espouse. This paper investigated the summarization strategies followed in the writing of literature review sections of information science research papers. We found that the summarization strategies followed are different for the two major styles of literature review writing, descriptive versus integrative literature reviews. Descriptive literature reviews, which focus on individual descriptions of research papers, are more likely to reference the Method and the Result sections of the cited paper and copy-paste text the referenced text. In contrast, integrative literature reviews, which synthesize the main ideas for many papers together, have more critiques and focus mainly on the Conclusion sections. These findings, based on a hand-annotated dataset, have the potential to scale up into a transformation-invariant neural architecture for scientific summarization that can generate different summaries of the input text with integrative or descriptive characteristics.

Suggested Citation

  • Kokil Jaidka & Christopher S. G. Khoo & Jin-Cheon Na, 2019. "Characterizing human summarization strategies for text reuse and transformation in literature review writing," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1563-1582, December.
  • Handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03250-5
    DOI: 10.1007/s11192-019-03250-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03250-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03250-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2016. "Proceedings Of Abstracts," 152nd Seminar, August 30 - September 1, 2016, Novi Sad, Serbia 244068, European Association of Agricultural Economists.
    2. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    3. Aaron Elkiss & Siwei Shen & Anthony Fader & Güneş Erkan & David States & Dragomir Radev, 2008. "Blind men and elephants: What do citation summaries tell us about a research article?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(1), pages 51-62, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pancheng Wang & Shasha Li & Haifang Zhou & Jintao Tang & Ting Wang, 2019. "Cited text spans identification with an improved balanced ensemble model," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1111-1145, September.
    2. Samaneh Karimi & Luis Moraes & Avisha Das & Azadeh Shakery & Rakesh Verma, 2018. "Citance-based retrieval and summarization using IR and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1331-1366, August.
    3. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    4. Ana Gouveia & Sílvia Santos & Inês Gonçalves, 2017. "The short-term impact of structural reforms on productivity growth: beyond direct effects," GEE Papers 0065, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Feb 2017.
    5. Masaki Eto, 2013. "Evaluations of context-based co-citation searching," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 651-673, February.
    6. Wen Gao & Xinhong Hei & Yichuan Wang, 2023. "The Data Privacy Protection Method for Hyperledger Fabric Based on Trustzone," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    7. Kai Lu & Alireza Khani & Baoming Han, 2018. "A Trip Purpose-Based Data-Driven Alighting Station Choice Model Using Transit Smart Card Data," Complexity, Hindawi, vol. 2018, pages 1-14, August.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Dan Andrews & Filippos Petroulakis, 2017. "Breaking the Shackles: Zombie Firms, Weak Banks and Depressed Restructuring in Europe," OECD Economics Department Working Papers 1433, OECD Publishing.
    10. Annarelli, Alessandro & Battistella, Cinzia & Nonino, Fabio & Parida, Vinit & Pessot, Elena, 2021. "Literature review on digitalization capabilities: Co-citation analysis of antecedents, conceptualization and consequences," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    11. Corrêa Jr., Edilson A. & Silva, Filipi N. & da F. Costa, Luciano & Amancio, Diego R., 2017. "Patterns of authors contribution in scientific manuscripts," Journal of Informetrics, Elsevier, vol. 11(2), pages 498-510.
    12. Kiran Sharma, 2021. "Team size and retracted citations reveal the patterns of retractions from 1981 to 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8363-8374, October.
    13. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    14. OKADA Yoshimi & NAITO Yusuke & NAGAOKA Sadao, 2016. "Contribution of Patent Examination to Making the Patent Scope Consistent with the Invention: Evidence from Japan," Discussion papers 16092, Research Institute of Economy, Trade and Industry (RIETI).
    15. Mariam Camarero & Jesús Peiró-Palomino & Cecilio Tamarit, 2017. "External imbalances and growth," Working Papers 2017/02, Economics Department, Universitat Jaume I, Castellón (Spain).
    16. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    17. Steff De Visscher & Markus Eberhardt & Gerdie Everaert, 2017. "Measuring productivity and absorptive capacity evolution," Discussion Papers 2017-11, University of Nottingham, GEP.
    18. Jeremy Foote, 2022. "A Systems Approach to Studying Online Communities," Media and Communication, Cogitatio Press, vol. 10(2), pages 29-40.
    19. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    20. van Riet, Ad, 2017. "Addressing the safety trilemma: a safe sovereign asset for the eurozone," ESRB Working Paper Series 35, European Systemic Risk Board.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:121:y:2019:i:3:d:10.1007_s11192-019-03250-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.