IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2785-8.html
   My bibliography  Save this article

Citance-based retrieval and summarization using IR and machine learning

Author

Listed:
  • Samaneh Karimi

    (University of Tehran
    University of Houston)

  • Luis Moraes

    (University of Houston)

  • Avisha Das

    (University of Houston)

  • Azadeh Shakery

    (University of Tehran
    University of Tehran)

  • Rakesh Verma

    (University of Houston)

Abstract

We consider the three interesting problems posed by the CL-SciSumm series of shared tasks. Given a reference document D and a set $$C_D$$ C D of citances for D: (1) find the span of reference text that corresponds to each citance $$c \in C_D$$ c ∈ C D , (2) identify the facet corresponding to each span of reference text from a predefined list of five facets, and (3) construct a summary of at most 250 words for D based on the reference spans. The shared task provided annotated training and test sets for these problems. This paper describes our efforts and the results achieved for each problem, and also a discussion of some interesting parameters of the datasets, which may spur further improvements and innovations.

Suggested Citation

  • Samaneh Karimi & Luis Moraes & Avisha Das & Azadeh Shakery & Rakesh Verma, 2018. "Citance-based retrieval and summarization using IR and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1331-1366, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2785-8
    DOI: 10.1007/s11192-018-2785-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2785-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2785-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2016. "Proceedings Of Abstracts," 152nd Seminar, August 30 - September 1, 2016, Novi Sad, Serbia 244068, European Association of Agricultural Economists.
    2. Aaron Elkiss & Siwei Shen & Anthony Fader & Güneş Erkan & David States & Dragomir Radev, 2008. "Blind men and elephants: What do citation summaries tell us about a research article?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(1), pages 51-62, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed-Ul Hassan & Naif R. Aljohani & Mudassir Shabbir & Umair Ali & Sehrish Iqbal & Raheem Sarwar & Eugenio Martínez-Cámara & Sebastián Ventura & Francisco Herrera, 2020. "Tweet Coupling: a social media methodology for clustering scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 973-991, August.
    2. Iqra Safder & Saeed-Ul Hassan, 2019. "Bibliometric-enhanced information retrieval: a novel deep feature engineering approach for algorithm searching from full-text publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 257-277, April.
    3. Guillaume Cabanac & Ingo Frommholz & Philipp Mayr, 2018. "Bibliometric-enhanced information retrieval: preface," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1225-1227, August.
    4. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    5. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pancheng Wang & Shasha Li & Haifang Zhou & Jintao Tang & Ting Wang, 2019. "Cited text spans identification with an improved balanced ensemble model," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1111-1145, September.
    2. Kokil Jaidka & Christopher S. G. Khoo & Jin-Cheon Na, 2019. "Characterizing human summarization strategies for text reuse and transformation in literature review writing," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1563-1582, December.
    3. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    4. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    5. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    6. Nava Ashraf & Edward Glaeser & Abraham Holland & Bryce Millett Steinberg, 2017. "Water, Health and Wealth," NBER Working Papers 23807, National Bureau of Economic Research, Inc.
    7. Martin Fiszbein, 2017. "Agricultural Diversity, Structural Change and Long-run Development: Evidence from the U.S," NBER Working Papers 23183, National Bureau of Economic Research, Inc.
    8. Ana Gouveia & Sílvia Santos & Inês Gonçalves, 2017. "The short-term impact of structural reforms on productivity growth: beyond direct effects," GEE Papers 0065, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Feb 2017.
    9. Masaki Eto, 2013. "Evaluations of context-based co-citation searching," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 651-673, February.
    10. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    11. Wen Gao & Xinhong Hei & Yichuan Wang, 2023. "The Data Privacy Protection Method for Hyperledger Fabric Based on Trustzone," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    12. Kai Lu & Alireza Khani & Baoming Han, 2018. "A Trip Purpose-Based Data-Driven Alighting Station Choice Model Using Transit Smart Card Data," Complexity, Hindawi, vol. 2018, pages 1-14, August.
    13. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    14. Dan Andrews & Filippos Petroulakis, 2017. "Breaking the Shackles: Zombie Firms, Weak Banks and Depressed Restructuring in Europe," OECD Economics Department Working Papers 1433, OECD Publishing.
    15. Muhammad Touseef Ikram & Muhammad Tanvir Afzal, 2019. "Aspect based citation sentiment analysis using linguistic patterns for better comprehension of scientific knowledge," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 73-95, April.
    16. Annarelli, Alessandro & Battistella, Cinzia & Nonino, Fabio & Parida, Vinit & Pessot, Elena, 2021. "Literature review on digitalization capabilities: Co-citation analysis of antecedents, conceptualization and consequences," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    17. Kumar Bahadur Darjee & Prem Raj Neupane & Michael Köhl, 2023. "Proactive Adaptation Responses by Vulnerable Communities to Climate Change Impacts," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    18. Kiran Sharma, 2021. "Team size and retracted citations reveal the patterns of retractions from 1981 to 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8363-8374, October.
    19. OKADA Yoshimi & NAITO Yusuke & NAGAOKA Sadao, 2016. "Contribution of Patent Examination to Making the Patent Scope Consistent with the Invention: Evidence from Japan," Discussion papers 16092, Research Institute of Economy, Trade and Industry (RIETI).
    20. Mariam Camarero & Jesús Peiró-Palomino & Cecilio Tamarit, 2017. "External imbalances and growth," Working Papers 2017/02, Economics Department, Universitat Jaume I, Castellón (Spain).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2785-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.