IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v112y2017i1d10.1007_s11192-017-2333-y.html
   My bibliography  Save this article

Allometric scaling in scientific fields

Author

Listed:
  • Hongguang Dong

    (Higher Education Press)

  • Menghui Li

    (Beijing Institute of Science and Technology Information)

  • Ru Liu

    (Beijing Institute of Science and Technology Information)

  • Chensheng Wu

    (Beijing Institute of Science and Technology Information)

  • Jinshan Wu

    (Beijing Normal University)

Abstract

Allometric scaling can reflect underlying mechanisms, dynamics and structures in complex systems; examples include typical scaling laws in biology, ecology and urban development. In this work, we study allometric scaling in scientific fields. By performing an analysis of the outputs/inputs of various scientific fields, including the numbers of publications, citations, and references, with respect to the number of authors, we find that in all fields that we have studied thus far, including physics, mathematics and economics, there are allometric scaling laws relating the outputs/inputs and the sizes of scientific fields. Furthermore, the exponents of the scaling relations have remained quite stable over the years. We also find that the deviations of individual subfields from the overall scaling laws are good indicators for ranking subfields independently of their sizes.

Suggested Citation

  • Hongguang Dong & Menghui Li & Ru Liu & Chensheng Wu & Jinshan Wu, 2017. "Allometric scaling in scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 583-594, July.
  • Handle: RePEc:spr:scient:v:112:y:2017:i:1:d:10.1007_s11192-017-2333-y
    DOI: 10.1007/s11192-017-2333-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2333-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2333-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bettencourt, Luis M.A. & Lobo, Jose & Strumsky, Deborah, 2007. "Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size," Research Policy, Elsevier, vol. 36(1), pages 107-120, February.
    2. Katz, J. Sylvan, 1999. "The self-similar science system1," Research Policy, Elsevier, vol. 28(5), pages 501-517, June.
    3. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    4. J Sylvan Katz, 2016. "What Is a Complex Innovation System?," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-24, June.
    5. Milojević, Staša, 2013. "Accuracy of simple, initials-based methods for author name disambiguation," Journal of Informetrics, Elsevier, vol. 7(4), pages 767-773.
    6. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    7. Mark Herrera & David C Roberts & Natali Gulbahce, 2010. "Mapping the Evolution of Scientific Fields," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
    8. Kühnert, Christian & Helbing, Dirk & West, Geoffrey B., 2006. "Scaling laws in urban supply networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 96-103.
    9. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    10. Katz, J. Sylvan, 2006. "Indicators for complex innovation systems," Research Policy, Elsevier, vol. 35(7), pages 893-909, September.
    11. Anthony F J van Raan, 2013. "Universities Scale Like Cities," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-14, March.
    12. Staša Milojević, 2010. "Power law distributions in information science: Making the case for logarithmic binning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2417-2425, December.
    13. Gao, Xia & Guan, Jiancheng, 2009. "A scale-independent analysis of the performance of the Chinese innovation system," Journal of Informetrics, Elsevier, vol. 3(4), pages 321-331.
    14. Önder Nomaler & Koen Frenken & Gaston Heimeriks, 2014. "On Scaling of Scientific Knowledge Production in U.S. Metropolitan Areas," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    15. Paul Travis Nicholls, 1987. "Estimation of Zipf parameters," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 38(6), pages 443-445, November.
    16. J Sylvan Katz & Viv Cothey, 2006. "Web indicators for complex innovation systems," Research Evaluation, Oxford University Press, vol. 15(2), pages 85-95, August.
    17. Lämmer, Stefan & Gehlsen, Björn & Helbing, Dirk, 2006. "Scaling laws in the spatial structure of urban road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 89-95.
    18. J Sylvan Katz, 2000. "Scale-independent indicators and research evaluation," Science and Public Policy, Oxford University Press, vol. 27(1), pages 23-36, February.
    19. Zhang, Jiang & Yu, Tongkui, 2010. "Allometric scaling of countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4887-4896.
    20. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms," Working Papers 99-07-047, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mogues, Tewodaj & Billings, Lucy, 2019. "The making of public investments: The role of champions, co-ordination, and characteristics of nutrition programmes in Mozambique," Food Policy, Elsevier, vol. 83(C), pages 29-38.
    2. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2018. "The power law relationship between citation impact and multi-authorship patterns in articles in Information Science & Library Science journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 919-932, March.
    2. Guillermo Armando Ronda-Pupo, 2017. "The effect of document types and sizes on the scaling relationship between citations and co-authorship patterns in management journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1191-1207, March.
    3. Guillermo Armando Ronda-Pupo, 2017. "The citation-based impact of complex innovation systems scales with the size of the system," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 141-151, July.
    4. Gao, Xia & Guo, Xiaochuan & Sylvan, Katz J. & Guan, Jiancheng, 2010. "The Chinese innovation system during economic transition: A scale-independent view," Journal of Informetrics, Elsevier, vol. 4(4), pages 618-628.
    5. Önder Nomaler & Koen Frenken & Gaston Heimeriks, 2014. "On Scaling of Scientific Knowledge Production in U.S. Metropolitan Areas," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    6. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    7. Sylvan Katz, 2012. "Science Policy, Complex Innovation Systems and Performance Measures," SPRU Working Paper Series 198, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Calabrese, Armando & Capece, Guendalina & Costa, Roberta & Di Pillo, Francesca & Giuffrida, Stefania, 2018. "A ‘power law’ based method to reduce size-related bias in indicators of knowledge performance: An application to university research assessment," Journal of Informetrics, Elsevier, vol. 12(4), pages 1263-1281.
    9. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2017. "The scaling relationship between degree centrality of countries and their citation-based performance on Management Information Systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1285-1299, September.
    10. Gao, Xia & Guan, Jiancheng, 2009. "A scale-independent analysis of the performance of the Chinese innovation system," Journal of Informetrics, Elsevier, vol. 3(4), pages 321-331.
    11. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    12. Leporia, Benedetto & Geuna, Aldo & Mira, Antonietta, 2018. "Scientific Output of US and European Universities Scales Super-linearly with Resources," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201806, University of Turin.
    13. Giancarlo Ruocco & Cinzia Daraio, 2013. "An empirical approach to compare the performance of heterogeneous academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 601-625, December.
    14. Guillermo Armando Ronda-Pupo, 2020. "The performance of Latin American research on economics & business," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 573-590, January.
    15. S. Varun Shrivats & Sujit Bhattacharya, 2014. "Forecasting the trend of international scientific collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1941-1954, December.
    16. Abbasiharofteh, Milad & Kinne, Jan & Krüger, Miriam, 2021. "The strength of weak and strong ties in bridging geographic and cognitive distances," ZEW Discussion Papers 21-049, ZEW - Leibniz Centre for European Economic Research.
    17. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    18. Anthony F J van Raan, 2013. "Universities Scale Like Cities," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-14, March.
    19. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    20. J. Lobo & D. Strumsky & J. Rothwell, 2013. "Scaling of patenting with urban population size: evidence from global metropolitan areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 819-828, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:112:y:2017:i:1:d:10.1007_s11192-017-2333-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.