IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v111y2017i3d10.1007_s11192-017-2350-x.html
   My bibliography  Save this article

The impact of individual collaborative activities on knowledge creation and transmission

Author

Listed:
  • Nuha Zamzami

    (Concordia University
    King Abdul-Aziz University)

  • Andrea Schiffauerova

    (Concordia University
    Masdar Institute of Science and Technology)

Abstract

Collaboration is a major factor in the knowledge and innovation creation in emerging science-driven industries where the technology is rapidly changing and constantly evolving, such as nanotechnology. The objective of this work is to investigate the role of individual scientists and their collaborations in enhancing the knowledge flows, and consequently the scientific production. The methodology involves two main phases. First, the data on all the nanotechnology journal publications in Canada was extracted from the SCOPUS database to create the co-authorship network, and then employ statistical data mining techniques to analyze the scientists’ research performance and partnership history. Also, a questionnaire was sent directly to the researchers selected from our database seeking the predominant properties that make a scientist sufficiently attractive to be selected as a research partner. In the second phase, an agent-based model using Netlogo has been developed to study the network in its dynamic context where several factors could be controlled. It was found that scientists in centralized positions in such networks have a considerable positive impact on the knowledge flows, while loyalty and strong connections within a dense local research group negatively affect the knowledge transmission. Star scientists appear to play a substitutive role in the network and are selected when the usual collaborators, i.e., most famous, and trustable partners are scarce or missing.

Suggested Citation

  • Nuha Zamzami & Andrea Schiffauerova, 2017. "The impact of individual collaborative activities on knowledge creation and transmission," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1385-1413, June.
  • Handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2350-x
    DOI: 10.1007/s11192-017-2350-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2350-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2350-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca Henderson & Iain Cockburn, 1996. "Scale, Scope, and Spillovers: The Determinants of Research Productivity in Drug Discovery," RAND Journal of Economics, The RAND Corporation, vol. 27(1), pages 32-59, Spring.
    2. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    3. Guan, Jian Cheng & Yan, Yan, 2016. "Technological proximity and recombinative innovation in the alternative energy field," Research Policy, Elsevier, vol. 45(7), pages 1460-1473.
    4. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.
    5. Triulzi, Giorgio & Scholz, Ramon & Pyka, Andreas, 2011. "R&D and knowledge dynamics in university-industry relationships in biotech and pharmaceuticals: An agent-based model," FZID Discussion Papers 33-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    6. Catherine Beaudry & Ramine Kananian, 2013. "Follow the (Industry) Money -- The Impact of Science Networks and Industry-to-University Contracts on Academic Patenting in Nanotechnology and Biotechnology," Industry and Innovation, Taylor & Francis Journals, vol. 20(3), pages 241-260, April.
    7. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    8. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    9. Alireza Abbasi & Jörn Altmann & Junseok Hwang, 2010. "Evaluating scholars based on their academic collaboration activities: two indices, the RC-index and the CC-index, for quantifying collaboration activities of researchers and scientific communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 1-13, April.
    10. Holger Graf, 2011. "Gatekeepers in regional networks of innovators," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 35(1), pages 173-198.
    11. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    12. Stefano Breschi & Francesco Lissoni, 2006. "Mobility of inventors and the geography of knowledge spillovers. New evidence on US data," KITeS Working Papers 184, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Oct 2006.
    13. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    14. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    15. Alireza Abbasi & Jorn Altmann, 2010. "On the Correlation between Research Performance and Social Network Analysis Measures Applied to Research Collaboration Networks," TEMEP Discussion Papers 201066, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Oct 2010.
    16. Allen, Robert C., 1983. "Collective invention," Journal of Economic Behavior & Organization, Elsevier, vol. 4(1), pages 1-24, March.
    17. Beaudry, Catherine & Schiffauerova, Andrea, 2011. "Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation," European Management Journal, Elsevier, vol. 29(5), pages 362-376.
    18. Leila Tahmooresnejad & Catherine Beaudry & Andrea Schiffauerova, 2015. "The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 753-787, January.
    19. Lynne G. Zucker & Michael R. Darby, 2005. "Socio-economic Impact of Nanoscale Science: Initial Results and NanoBank," NBER Working Papers 11181, National Bureau of Economic Research, Inc.
    20. J. Stanley Metcalfe & John Foster (ed.), 2004. "Evolution and Economic Complexity," Books, Edward Elgar Publishing, number 3216.
    21. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    22. Alireza Abbasi & Jorn Altmann & Junseok Hwang, 2009. "Evaluating Scholars Based on their Academic Collaboration Activities: The RC-Index and CC-Index for Quantifying Collaboration Activities of Researchers and Scientific Communities," TEMEP Discussion Papers 200915, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2009.
    23. Hamidreza Eslami & Ashkan Ebadi & Andrea Schiffauerova, 2013. "Effect of collaboration network structure on knowledge creation and technological performance: the case of biotechnology in Canada," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(1), pages 99-119, October.
    24. P. S. Nagpaul, 2002. "Visualizing cooperation networks of elite institutions in India," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 213-228, June.
    25. Lee Fleming & Charles King & Adam I. Juda, 2007. "Small Worlds and Regional Innovation," Organization Science, INFORMS, vol. 18(6), pages 938-954, December.
    26. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    27. Ina Drejer & Anker Lund Vinding, 2006. "Organisation, 'anchoring' of knowledge, and innovative activity in construction," Construction Management and Economics, Taylor & Francis Journals, vol. 24(9), pages 921-931.
    28. Andrea Schiffauerova & Catherine Beaudry, 2011. "Star scientists and their positions in the Canadian biotechnology network," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(4), pages 343-366.
    29. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gita Ghiasi & Matthew Harsh & Andrea Schiffauerova, 2018. "Inequality and collaboration patterns in Canadian nanotechnology: implications for pro-poor and gender-inclusive policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 785-815, May.
    2. Mengyang Wang & Lihe Chai, 2018. "Three new bibliometric indicators/approaches derived from keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 721-750, August.
    3. Liming Zhao & Haihong Zhang & Wenqing Wu, 2019. "Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 657-685, May.
    4. Gita Ghiasi & Catherine Beaudry & Vincent Larivière & Carl St-Pierre & Andrea Schiffauerova & Matthew Harsh, 2021. "Who profits from the Canadian nanotechnology reward system? Implications for gender-responsible innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7937-7991, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorsa Tajaddod Alizadeh & Andrea Schiffauerova, 2018. "Evaluation Of Effects Of Collaborative Patterns On The Efficiency Of Scientific Networks Using Simulation," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-28, May.
    2. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    3. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    4. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    5. Yan Yan & Jiancheng Guan, 2018. "How multiple networks help in creating knowledge: evidence from alternative energy patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 51-77, April.
    6. Yao, Li & Li, Jun & Li, Jian, 2020. "Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Kazuki Nakajima & Kazuyuki Shudo & Naoki Masuda, 2023. "Higher-order rich-club phenomenon in collaborative research grant networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2429-2446, April.
    8. Ba, Zhichao & Mao, Jin & Ma, Yaxue & Liang, Zhentao, 2021. "Exploring the effect of city-level collaboration and knowledge networks on innovation: Evidence from energy conservation field," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    10. Hamidreza Eslami & Ashkan Ebadi & Andrea Schiffauerova, 2013. "Effect of collaboration network structure on knowledge creation and technological performance: the case of biotechnology in Canada," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(1), pages 99-119, October.
    11. Alireza Abbasi & Mahdi Jalili & Abolghasem Sadeghi-Niaraki, 2018. "Influence of network-based structural and power diversity on research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 579-590, October.
    12. Gita Ghiasi & Matthew Harsh & Andrea Schiffauerova, 2018. "Inequality and collaboration patterns in Canadian nanotechnology: implications for pro-poor and gender-inclusive policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 785-815, May.
    13. Na Zhang & Lu Cheng & Chao Sun & Julie Callaert & Bart Looy, 2023. "The role of inter- and intra-organisational networks in innovation: towards requisite variety," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 4117-4136, July.
    14. Anahita Hajibabaei & Andrea Schiffauerova & Ashkan Ebadi, 2023. "Women and key positions in scientific collaboration networks: analyzing central scientists’ profiles in the artificial intelligence ecosystem through a gender lens," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1219-1240, February.
    15. Yuandi Wang & Jian Li & Lutao Ning & Deming Zeng & Xin Gu, 2014. "Dynamic patterns of technology collaboration: a case study of the Chinese automobile industry, 1985–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 663-683, October.
    16. Yan, Yan & Guan, JianCheng, 2018. "Social capital, exploitative and exploratory innovations: The mediating roles of ego-network dynamics," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 244-258.
    17. Ashkan Ebadi & Andrea Schiffauerova, 2016. "iSEER: an intelligent automatic computer system for scientific evaluation of researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 477-498, May.
    18. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    19. Bilicz, Dávid, 2021. "A hálózatok és a kapcsolatok szerepe az innovációban és a tudás áramlásában. Szisztematikus szakirodalmi áttekintés [The role of networks and partnerships in innovation and knowledge flow - a syste," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 674-698.
    20. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:111:y:2017:i:3:d:10.1007_s11192-017-2350-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.