IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v128y2023i4d10.1007_s11192-022-04621-1.html
   My bibliography  Save this article

Higher-order rich-club phenomenon in collaborative research grant networks

Author

Listed:
  • Kazuki Nakajima

    (Tokyo Institute of Technology
    State University of New York at Buffalo)

  • Kazuyuki Shudo

    (Tokyo Institute of Technology
    Academic Center for Computing and Media Studies, Kyoto University)

  • Naoki Masuda

    (State University of New York at Buffalo
    State University of New York at Buffalo
    Waseda University)

Abstract

Modern scientific work, including writing papers and submitting research grant proposals, increasingly involves researchers from different institutions. In grant collaborations, it is known that institutions involved in many collaborations tend to densely collaborate with each other, forming rich clubs. Here we investigate higher-order rich-club phenomena in networks of collaborative research grants among institutions and their associations with research impact. Using publicly available data from the National Science Foundation in the US, we construct a bipartite network of institutions and collaborative grants, which distinguishes among the collaboration with different numbers of institutions. By extending the concept and algorithms of the rich club for dyadic networks to the case of bipartite networks, we find rich clubs both in the entire bipartite network and the bipartite subnetwork induced by the collaborative grants involving a given number of institutions up to five. We also find that the collaborative grants within rich clubs tend to be more impactful in a per-dollar sense than the control. Our results highlight advantages of collaborative grants among the institutions in the rich clubs.

Suggested Citation

  • Kazuki Nakajima & Kazuyuki Shudo & Naoki Masuda, 2023. "Higher-order rich-club phenomenon in collaborative research grant networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2429-2446, April.
  • Handle: RePEc:spr:scient:v:128:y:2023:i:4:d:10.1007_s11192-022-04621-1
    DOI: 10.1007/s11192-022-04621-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04621-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04621-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ankrah, Samuel & AL-Tabbaa, Omar, 2015. "Universities–industry collaboration: A systematic review," Scandinavian Journal of Management, Elsevier, vol. 31(3), pages 387-408.
    2. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    3. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    4. Joshua L Rosenbloom & Donna K Ginther & Ted Juhl & Joseph A Heppert, 2015. "The Effects of Research & Development Funding on Scientific Productivity: Academic Chemistry, 1990-2009," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    5. Payne A. Abigail & Siow Aloysius, 2003. "Does Federal Research Funding Increase University Research Output?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(1), pages 1-24, May.
    6. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.
    7. Wang, Jian, 2016. "Knowledge creation in collaboration networks: Effects of tie configuration," Research Policy, Elsevier, vol. 45(1), pages 68-80.
    8. Gulbrandsen, Magnus & Smeby, Jens-Christian, 2005. "Industry funding and university professors' research performance," Research Policy, Elsevier, vol. 34(6), pages 932-950, August.
    9. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    10. Ashkan Ebadi & Andrea Schiffauerova, 2015. "How to Receive More Funding for Your Research? Get Connected to the Right People!," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    11. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    12. Haiyan Hou & Hildrun Kretschmer & Zeyuan Liu, 2008. "The structure of scientific collaboration networks in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 189-202, May.
    13. Defazio, Daniela & Lockett, Andy & Wright, Mike, 2009. "Funding incentives, collaborative dynamics and scientific productivity: Evidence from the EU framework program," Research Policy, Elsevier, vol. 38(2), pages 293-305, March.
    14. Richard Van Noorden, 2015. "Interdisciplinary research by the numbers," Nature, Nature, vol. 525(7569), pages 306-307, September.
    15. Kevin W. Boyack & Katy Börner, 2003. "Indicator‐assisted evaluation and funding of research: Visualizing the influence of grants on the number and citation counts of research papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 447-461, March.
    16. Qiang Zhi & Tianguang Meng, 2016. "Funding allocation, inequality, and scientific research output: an empirical study based on the life science sector of Natural Science Foundation of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 603-628, February.
    17. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    18. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    19. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    20. Lindell Bromham & Russell Dinnage & Xia Hua, 2016. "Interdisciplinary research has consistently lower funding success," Nature, Nature, vol. 534(7609), pages 684-687, June.
    21. Jacob, Brian A. & Lefgren, Lars, 2011. "The impact of research grant funding on scientific productivity," Journal of Public Economics, Elsevier, vol. 95(9), pages 1168-1177.
    22. An Zeng & Ying Fan & Zengru Di & Yougui Wang & Shlomo Havlin, 2021. "Fresh teams are associated with original and multidisciplinary research," Nature Human Behaviour, Nature, vol. 5(10), pages 1314-1322, October.
    23. Yin, Zhifeng & Liang, Zheng & Zhi, Qiang, 2018. "Does the concentration of scientific research funding in institutions promote knowledge output?," Journal of Informetrics, Elsevier, vol. 12(4), pages 1146-1159.
    24. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    25. Bedoor K. AlShebli & Talal Rahwan & Wei Lee Woon, 2018. "The preeminence of ethnic diversity in scientific collaboration," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    26. Wayne P. Wahls, 2019. "Opinion: The National Institutes of Health needs to better balance funding distributions among US institutions," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(27), pages 13150-13154, July.
    27. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    28. Erjia Yan & Ying Ding & Qinghua Zhu, 2010. "Mapping library and information science in China: a coauthorship network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 115-131, April.
    29. Bozeman, Barry & Corley, Elizabeth, 2004. "Scientists' collaboration strategies: implications for scientific and technical human capital," Research Policy, Elsevier, vol. 33(4), pages 599-616, May.
    30. Paul R. McAllister & Francis Narin, 1983. "Characterization of the research papers of U.S. medical schools," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 34(2), pages 123-131, March.
    31. Cummings, Jonathon N. & Kiesler, Sara, 2007. "Coordination costs and project outcomes in multi-university collaborations," Research Policy, Elsevier, vol. 36(10), pages 1620-1634, December.
    32. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin Gallagher & Dean Lusher & Johan Koskinen & Bopha Roden & Peng Wang & Aaron Gosling & Anastasios Polyzos & Martina Stenzel & Sarah Hegarty & Thomas Spurling & Gregory Simpson, 2023. "Network patterns of university-industry collaboration: A case study of the chemical sciences in Australia," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4559-4588, August.
    2. Marco Mancastroppa & Iacopo Iacopini & Giovanni Petri & Alain Barrat, 2023. "Hyper-cores promote localization and efficient seeding in higher-order processes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebadi, Ashkan & Schiffauerova, Andrea, 2015. "How to become an important player in scientific collaboration networks?," Journal of Informetrics, Elsevier, vol. 9(4), pages 809-825.
    2. Zharova, Alona & Härdle, Wolfgang Karl & Lessmann, Stefan, 2017. "Is scientific performance a function of funds?," SFB 649 Discussion Papers 2017-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Hajibabaei, Anahita & Schiffauerova, Andrea & Ebadi, Ashkan, 2022. "Gender-specific patterns in the artificial intelligence scientific ecosystem," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Zharova, Alona & Härdle, Wolfgang Karl & Lessmann, Stefan, 2023. "Data-driven support for policy and decision-making in university research management: A case study from Germany," European Journal of Operational Research, Elsevier, vol. 308(1), pages 353-368.
    5. Zhou Mo & Zhang Yujie & Lei Jiasu & Tan Xiaowen, 2022. "Early firm engagement, government research funding, and the privatization of public knowledge," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4797-4826, August.
    6. Alona Zharova & Wolfgang K. Härdle & Stefan Lessmann, 2017. "Is Scientific Performance a Function of Funds?," SFB 649 Discussion Papers SFB649DP2017-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    8. Ashkan Ebadi & Andrea Schiffauerova, 2016. "iSEER: an intelligent automatic computer system for scientific evaluation of researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 477-498, May.
    9. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    10. Andrea Bonaccorsi & Brigida Blasi & Carmela Anna Nappi & Sandra Romagnosi, 2022. "Quality of research as source and signal: revisiting the valorization process beyond substitution vs complementarity," The Journal of Technology Transfer, Springer, vol. 47(2), pages 407-434, April.
    11. Belén Álvarez-Bornstein & Adrián A. Díaz-Faes & María Bordons, 2019. "What characterises funded biomedical research? Evidence from a basic and a clinical domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 805-825, May.
    12. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).
    13. Annita Nugent & Ho Fai Chan & Uwe Dulleck, 2022. "Government funding of university-industry collaboration: exploring the impact of targeted funding on university patent activity," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 29-73, January.
    14. Liu, Qiuling & Guo, Lei & Sun, Yiping & Ren, Linlin & Wang, Xinhua & Han, Xiaohui, 2024. "Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis," Journal of Informetrics, Elsevier, vol. 18(1).
    15. Ashkan Ebadi & Andrea Schiffauerova, 2015. "How to Receive More Funding for Your Research? Get Connected to the Right People!," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    16. Nuha Zamzami & Andrea Schiffauerova, 2017. "The impact of individual collaborative activities on knowledge creation and transmission," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1385-1413, June.
    17. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).
    18. Daniele Rotolo & Michael Hopkins & Nicola Grassano, 2023. "Do funding sources complement or substitute? Examining the impact of cancer research publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 50-66, January.
    19. Barbara S. Lancho-Barrantes & Hector G. Ceballos-Cancino & Francisco J. Cantu-Ortiz, 2021. "Comparing the efficiency of countries to assimilate and apply research investment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1347-1369, August.
    20. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:128:y:2023:i:4:d:10.1007_s11192-022-04621-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.