IDEAS home Printed from https://ideas.repec.org/a/spr/schmbr/v72y2020i4d10.1007_s41464-020-00102-1.html
   My bibliography  Save this article

Creating Value From Energy Data: A Practitioner’s Perspective on Data-Driven Smart Energy Business Models

Author

Listed:
  • Friedrich Chasin

    (University of Münster)

  • Ute Paukstadt

    (University of Münster)

  • Patrick Ullmeyer
  • Jörg Becker

    (University of Münster)

Abstract

Along the energy value chain where produced energy is delivered for consumption within individual households, physical devices are being replaced by smart and connected products referred to as the Internet of Things. These smart products generate large volumes of data that can enable new data-driven business models. In the energy sector, consumers produce data by consuming energy, which is monitored and controlled by different smart energy products like microgeneration units or home automation devices. Although smart energy business models have been subject to academic research, the business value of data, which is created from smart energy products, remains unclear. Against this background, the paper presents a practitioners’ perspective on the data-driven potential of smart energy technologies for new business models, the constituting elements of these business models, and the challenges associated with their implementation. By doing this, we provide trajectories for the future of the energy industry and draw guiding implications for developing data-driven smart energy business models.

Suggested Citation

  • Friedrich Chasin & Ute Paukstadt & Patrick Ullmeyer & Jörg Becker, 2020. "Creating Value From Energy Data: A Practitioner’s Perspective on Data-Driven Smart Energy Business Models," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 72(4), pages 565-597, October.
  • Handle: RePEc:spr:schmbr:v:72:y:2020:i:4:d:10.1007_s41464-020-00102-1
    DOI: 10.1007/s41464-020-00102-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41464-020-00102-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41464-020-00102-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morris, Michael & Schindehutte, Minet & Allen, Jeffrey, 2005. "The entrepreneur's business model: toward a unified perspective," Journal of Business Research, Elsevier, vol. 58(6), pages 726-735, June.
    2. Azadeh Shomali & Jonatan Pinkse, 2016. "The consequences of smart grids for the business model of electricity firms," Post-Print hal-02022695, HAL.
    3. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    4. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    5. Marc Rysman, 2009. "The Economics of Two-Sided Markets," Journal of Economic Perspectives, American Economic Association, vol. 23(3), pages 125-143, Summer.
    6. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform Markets and Energy Services," Cambridge Working Papers in Economics 1361, Faculty of Economics, University of Cambridge.
    7. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    8. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    9. Henry Chesbrough & Richard S. Rosenbloom, 2002. "The role of the business model in capturing value from innovation: evidence from Xerox Corporation's technology spin-off companies," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(3), pages 529-555, June.
    10. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    11. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, April.
    12. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
    13. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    14. Geelen, Daphne & Reinders, Angèle & Keyson, David, 2013. "Empowering the end-user in smart grids: Recommendations for the design of products and services," Energy Policy, Elsevier, vol. 61(C), pages 151-161.
    15. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    16. Vinit Parida & David Sjödin & Wiebke Reim, 2019. "Reviewing Literature on Digitalization, Business Model Innovation, and Sustainable Industry: Past Achievements and Future Promises," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    17. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    18. Youngjin Yoo & Ola Henfridsson & Kalle Lyytinen, 2010. "Research Commentary ---The New Organizing Logic of Digital Innovation: An Agenda for Information Systems Research," Information Systems Research, INFORMS, vol. 21(4), pages 724-735, December.
    19. Giordano, Vincenzo & Fulli, Gianluca, 2012. "A business case for Smart Grid technologies: A systemic perspective," Energy Policy, Elsevier, vol. 40(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    2. Matthias Förster & Bastian Bansemir & Angela Roth, 2022. "Employee perspectives on value realization from data within data-driven business models," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(2), pages 767-806, June.
    3. Joanna Rosak-Szyrocka & Justyna Żywiołek & Maciej Mrowiec, 2022. "Analysis of Customer Satisfaction with the Quality of Energy Market Services in Poland," Energies, MDPI, vol. 15(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ute Paukstadt & Jörg Becker, 2021. "Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 51-66, March.
    2. Kaufmann, Simon & Künzel, Karoline & Loock, Moritz, 2013. "Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland," Energy Policy, Elsevier, vol. 53(C), pages 229-239.
    3. Ute Paukstadt & Jörg Becker, 2021. "From Energy as a Commodity to Energy as a Service—A Morphological Analysis of Smart Energy Services," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 207-242, June.
    4. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    6. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    7. Kubli, Merla & Puranik, Sanket, 2023. "A typology of business models for energy communities: Current and emerging design options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Guillermo Ivan Pereira & Patrícia Pereira da Silva & Deborah Soule, 2020. "Assessment of electricity distribution business model and market design alternatives: Evidence for policy design," Energy & Environment, , vol. 31(1), pages 40-59, February.
    10. Barjak, F. & Lindeque, J. & Koch, J. & Soland, M., 2022. "Segmenting household electricity customers with quantitative and qualitative approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Li, Changsheng & Shen, Bo, 2019. "Accelerating renewable energy electrification and rural economic development with an innovative business model: A case study in China," Energy Policy, Elsevier, vol. 127(C), pages 280-286.
    12. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    13. Lin, Chen-Chun & Yang, Chia-Han & Shyua, Joseph Z., 2013. "A comparison of innovation policy in the smart grid industry across the pacific: China and the USA," Energy Policy, Elsevier, vol. 57(C), pages 119-132.
    14. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    15. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    16. Maria Rosa De Giacomo & Raimund Bleischwitz, 2020. "Business models for environmental sustainability: Contemporary shortcomings and some perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3352-3369, December.
    17. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    18. Ancillai, Chiara & Sabatini, Andrea & Gatti, Marco & Perna, Andrea, 2023. "Digital technology and business model innovation: A systematic literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    19. Laudien, Sven M. & Reuter, Ute & Sendra Garcia, Francisco Javier & Botella-Carrubi, Dolores, 2024. "Digital advancement and its effect on business model design: Qualitative-empirical insights," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    20. Phamthi, Vananh & Ngominh, Trung, 2022. "Disruptive Innovation & Chance for Latecomer Firms in E-Commerce: The Cases of the YES and PINDUODUO," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2022), Hybrid Conference, Opatija, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Hybrid Conference, Opatija, Croatia, 17-18 June 2022, pages 364-376, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:schmbr:v:72:y:2020:i:4:d:10.1007_s41464-020-00102-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.