A Comparison of Bayesian Accelerated Failure Time Models with Spatially Varying Coefficients
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-020-00238-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Laura F. Boehm Vock & Brian J. Reich & Montserrat Fuentes & Francesca Dominici, 2015. "Spatial variable selection methods for investigating acute health effects of fine particulate matter components," Biometrics, The International Biometric Society, vol. 71(1), pages 167-177, March.
- Brian J. Reich & Montserrat Fuentes & Amy H. Herring & Kelly R. Evenson, 2010. "Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression," Biometrics, The International Biometric Society, vol. 66(3), pages 772-782, September.
- Jiajia Zhang & Andrew B. Lawson, 2011. "Bayesian parametric accelerated failure time spatial model and its application to prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 591-603, November.
- Henderson R. & Shimakura S. & Gorst D., 2002. "Modeling Spatial Variation in Leukemia Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 965-972, December.
- Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Lijiang Geng & Guanyu Hu, 2022. "Bayesian spatial homogeneity pursuit for survival data with an application to the SEER respiratory cancer data," Biometrics, The International Biometric Society, vol. 78(2), pages 536-547, June.
- Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.
- Zhihua Ma & Yishu Xue & Guanyu Hu, 2019. "Heterogeneous Regression Models for Clusters of Spatial Dependent Data," Papers 1907.02212, arXiv.org, revised Apr 2020.
- Guanyu Hu & Yishu Xue & Zhihua Ma, 2020. "Bayesian Clustered Coefficients Regression with Auxiliary Covariates Assistant Random Effects," Papers 2004.12022, arXiv.org, revised Aug 2021.
- Carroll, Rachel & Lawson, Andrew B. & Jackson, Chandra L. & Zhao, Shanshan, 2017. "Assessment of spatial variation in breast cancer-specific mortality using Louisiana SEER data," Social Science & Medicine, Elsevier, vol. 193(C), pages 1-7.
- Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- Zhihua Ma & Yishu Xue & Guanyu Hu, 2021. "Geographically Weighted Regression Analysis for Spatial Economics Data: A Bayesian Recourse," International Regional Science Review, , vol. 44(5), pages 582-604, September.
- Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
- Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
- Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
- Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
- Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
- Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
- Martin Tingley & Benjamin Shaby, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 47-53, March.
- C Emi Fergus & Andrew O Finley & Patricia A Soranno & Tyler Wagner, 2016. "Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
- Mauricio Sarrias, 2020.
"Random Parameters and Spatial Heterogeneity using Rchoice in R,"
REGION, European Regional Science Association, vol. 7, pages 1-19.
- Mauricio Sarrias, 2020. "Random Parameters and Spatial Heterogeneity using Rchoice in R," REGION, European Regional Science Association, vol. 7, pages 1-19.
- Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
More about this item
Keywords
Geographical pattern; prostate cancer; MCMC; survival model.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-020-00238-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.