IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i3p1116-1151.html
   My bibliography  Save this article

Bayesian inverse problems with heterogeneous variance

Author

Listed:
  • Natalia Bochkina
  • Jenovah Rodrigues

Abstract

We consider inverse problems in Hilbert spaces under correlated Gaussian noise, and use a Bayesian approach to find their regularized solution. We focus on mildly ill‐posed inverse problems with fractional noise, using a novel wavelet‐based vaguelette–vaguelette approach. It allows us to apply sequence space methods without assuming that all operators are simultaneously diagonalizable. The results are proved for more general bases and covariance operators. Our primary aim is to study posterior contraction rate in such inverse problems over Sobolev classes and compare it to the derived minimax rate. Secondly, we study effect of plugging in a consistent estimator of variances in sequence space on the posterior contraction rate. This result is applied to the problem with error in forward operator. Thirdly, we show that empirical Bayes posterior distribution with a plugged‐in maximum marginal likelihood estimator of the prior scale contracts at the optimal rate, adaptively, in the minimax sense.

Suggested Citation

  • Natalia Bochkina & Jenovah Rodrigues, 2023. "Bayesian inverse problems with heterogeneous variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1116-1151, September.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1116-1151
    DOI: 10.1111/sjos.12622
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12622
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    2. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    3. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    2. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    3. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    4. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    5. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    6. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    7. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    8. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    9. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    10. repec:jss:jstsof:12:i08 is not listed on IDEAS
    11. Dong Yan & Shota Gugushvili & Aad Vaart, 2024. "Bayesian Linear Inverse Problems in Regularity Scales with Discrete Observations," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 228-254, November.
    12. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    13. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    14. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    15. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    16. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    17. Capobianco, Enrico, 2003. "Independent Multiresolution Component Analysis and Matching Pursuit," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 385-402, March.
    18. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    19. Graham Horgan, 1999. "Using wavelets for data smoothing: A simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 923-932.
    20. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    21. Marcelo M. Taddeo & Pedro A. Morettin, 2023. "Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1331-1355, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1116-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.