IDEAS home Printed from https://ideas.repec.org/a/spr/rvmgts/v11y2017i2d10.1007_s11846-016-0193-0.html
   My bibliography  Save this article

Multi-category purchase incidences with marketing cross effects

Author

Listed:
  • Harald Hruschka

    (University of Regensburg)

Abstract

We focus on cross effects of marketing variables and cross category dependences for multi-category decisions which households take during a shopping trip to a retail store. A cross effect is defined as the effect which a marketing variable used for a certain product category exerts on purchases of another category. Using Dirichlet process mixture models with multivariate probit components we analyze purchase incidences of 24,047 shopping visits of a random sample of 1500 households. Independent variables of these models encompass marketing variables for 25 product categories and household attributes. We discuss differences between the two best performing models, a full model which includes both cross effects and cross category dependences, and a related restricted model which ignores cross effects. We obtain several high and significant differences with respect to category constants and cross category dependences between these two models. We also present explanations for the larger (in absolute terms) cross effects of features or displays. We demonstrate that by ignoring cross effects management runs the risk to obtain in many product categories too optimistic forecasts of sales revenue changes due to promotions. In contrast to previous related work suggesting not to use promotions which are not tailored to individual households in any of the investigated categories, we obtain support for such promotions in at least 48 % of the 25 product categories. In addition, based on the full model we demonstrate that often different categories are appropriate for promotions which are targeted at household clusters.

Suggested Citation

  • Harald Hruschka, 2017. "Multi-category purchase incidences with marketing cross effects," Review of Managerial Science, Springer, vol. 11(2), pages 443-469, March.
  • Handle: RePEc:spr:rvmgts:v:11:y:2017:i:2:d:10.1007_s11846-016-0193-0
    DOI: 10.1007/s11846-016-0193-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11846-016-0193-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11846-016-0193-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    2. Srinivasan, V. Seenu & Bodapati, Anand V., 2006. "The Impact of Feature Advertising on Customer Store Choice," Research Papers 1935, Stanford University, Graduate School of Business.
    3. P. Seetharaman & Siddhartha Chib & Andrew Ainslie & Peter Boatwright & Tat Chan & Sachin Gupta & Nitin Mehta & Vithala Rao & Andrei Strijnev, 2005. "Models of Multi-Category Choice Behavior," Marketing Letters, Springer, vol. 16(3), pages 239-254, December.
    4. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    5. Bart J. Bronnenberg & Michael W. Kruger & Carl F. Mela, 2008. "—The IRI Marketing Data Set," Marketing Science, INFORMS, vol. 27(4), pages 745-748, 07-08.
    6. Roger Betancourt & David Gautschi, 1990. "Demand Complementarities, Household Production, and Retail Assortments," Marketing Science, INFORMS, vol. 9(2), pages 146-161.
    7. Allenby, Greg M & Lenk, Peter J, 1995. "Reassessing Brand Loyalty, Price Sensitivity, and Merchandising Effects on Consumer Brand Choice," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 281-289, July.
    8. Yasemin Boztuğ & Lutz Hildebrandt, 2008. "Modeling Joint Purchases with a Multivariate MNL Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 60(4), pages 400-422, October.
    9. Sri Devi Duvvuri & Asim Ansari & Sunil Gupta, 2007. "Consumers' Price Sensitivities Across Complementary Categories," Management Science, INFORMS, vol. 53(12), pages 1933-1945, December.
    10. Marcel Corstjens & Peter Doyle, 1981. "A Model for Optimizing Retail Space Allocations," Management Science, INFORMS, vol. 27(7), pages 822-833, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Hruschka, 2021. "Comparing unsupervised probabilistic machine learning methods for market basket analysis," Review of Managerial Science, Springer, vol. 15(2), pages 497-527, February.
    2. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    3. Tomasz Brzęczek, 2020. "Optimisation of product portfolio sales and their risk subject to product width and diversity," Review of Managerial Science, Springer, vol. 14(5), pages 1009-1027, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald Hruschka, 2017. "Analyzing the dependences of multi-category purchases on interactions of marketing variables," Journal of Business Economics, Springer, vol. 87(3), pages 295-313, April.
    2. Katrin Dippold & Harald Hruschka, 2013. "Variable selection for market basket analysis," Computational Statistics, Springer, vol. 28(2), pages 519-539, April.
    3. Dippold, Katrin & Hruschka, Harald, 2010. "Variable Selection for Market Basket Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 443, University of Regensburg, Department of Economics.
    4. Vithala R. Rao & Gary J. Russell & Hemant Bhargava & Alan Cooke & Tim Derdenger & Hwang Kim & Nanda Kumar & Irwin Levin & Yu Ma & Nitin Mehta & John Pracejus & R. Venkatesh, 2018. "Emerging Trends in Product Bundling: Investigating Consumer Choice and Firm Behavior," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 107-120, March.
    5. Ma, Yu & Seetharaman, P.B. & Narasimhan, Chakravarthi, 2012. "Modeling Dependencies in Brand Choice Outcomes Across Complementary Categories," Journal of Retailing, Elsevier, vol. 88(1), pages 47-62.
    6. Feihong Xia & Rabikar Chatterjee & Jerrold H. May, 2019. "Using Conditional Restricted Boltzmann Machines to Model Complex Consumer Shopping Patterns," Marketing Science, INFORMS, vol. 38(4), pages 711-727, July.
    7. Harald Hruschka, 2021. "Comparing unsupervised probabilistic machine learning methods for market basket analysis," Review of Managerial Science, Springer, vol. 15(2), pages 497-527, February.
    8. Park, Sangwon & Nicolau, Juan L., 2015. "Differentiated effect of advertising: Joint vs. separate consumption," Tourism Management, Elsevier, vol. 47(C), pages 107-114.
    9. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    10. Xiaojing Dong & Pradeep Chintagunta & Puneet Manchanda, 2011. "A new multivariate count data model to study multi-category physician prescription behavior," Quantitative Marketing and Economics (QME), Springer, vol. 9(3), pages 301-337, September.
    11. Rakesh Niraj & V. Padmanabhan & P. B. Seetharaman, 2008. "Research Note—A Cross-Category Model of Households' Incidence and Quantity Decisions," Marketing Science, INFORMS, vol. 27(2), pages 225-235, 03-04.
    12. Stephan Seiler & Song Yao, 2017. "The impact of advertising along the conversion funnel," Quantitative Marketing and Economics (QME), Springer, vol. 15(3), pages 241-278, September.
    13. Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
    14. Prasad, Ashutosh & Strijnev, Andrei & Zhang, Qin, 2008. "What can grocery basket data tell us about health consciousness?," International Journal of Research in Marketing, Elsevier, vol. 25(4), pages 301-309.
    15. Kumar, Ashish & Trivedi, Minakshi & Bezawada, Ram & Sridhar, Karthik, 2012. "A comparative analysis of differential consumer response across supermarket and specialty store in the candy category," Journal of Retailing and Consumer Services, Elsevier, vol. 19(6), pages 561-569.
    16. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    17. Timothy J. Richards, 2017. "Analysis of Umbrella Branding with Crowdsourced Data," Agribusiness, John Wiley & Sons, Ltd., vol. 33(2), pages 135-150, April.
    18. A. Ye(scedilla)im Orhun, 2009. "Optimal Product Line Design When Consumers Exhibit Choice Set-Dependent Preferences," Marketing Science, INFORMS, vol. 28(5), pages 868-886, 09-10.
    19. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    20. Sanghak Lee & Jaehwan Kim & Greg M. Allenby, 2013. "A Direct Utility Model for Asymmetric Complements," Marketing Science, INFORMS, vol. 32(3), pages 454-470, May.

    More about this item

    Keywords

    Retailing; Marketing; Cross effects; Multi-category purchases; Multivariate probit;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:rvmgts:v:11:y:2017:i:2:d:10.1007_s11846-016-0193-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.