IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v89y2018i1d10.1007_s11134-018-9581-2.html
   My bibliography  Save this article

Dynamic rate Erlang-A queues

Author

Listed:
  • William A. Massey

    (Princeton University)

  • Jamol Pender

    (Cornell University)

Abstract

The multi-server queue with non-homogeneous Poisson arrivals and customer abandonment is a fundamental dynamic rate queueing model for large-scale service systems such as call centers and hospitals. Scaling the arrival rates and number of servers arises naturally when a manager updates a staffing schedule in response to a forecast of increased customer demand. Mathematically, this type of scaling ultimately gives us the fluid and diffusion limits as found in Mandelbaum et al. (Queueing Syst 30(1):149–201, 1998) for Markovian service networks. These asymptotics were inspired by the Halfin and Whitt (Oper Res 29(3):567–588, 1981) scaling for multi-server queues. In this paper, we provide a review and an in-depth analysis of the Erlang-A queueing model. We prove new results about cumulant moments of the Erlang-A queue, the transient behavior of the Erlang-A limit cycle, new fluid limits for the delay time of a virtual customer, and optimal static staffing policies for healthcare systems. We combine tools from queueing theory, ordinary differential equations, complex analysis, cumulant moments, orthogonal polynomials, and dynamic optimization to obtain new insights about this fundamental queueing model.

Suggested Citation

  • William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
  • Handle: RePEc:spr:queues:v:89:y:2018:i:1:d:10.1007_s11134-018-9581-2
    DOI: 10.1007/s11134-018-9581-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-018-9581-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-018-9581-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen G. Eick & William A. Massey & Ward Whitt, 1993. "The Physics of the Mt/G/∞ Queue," Operations Research, INFORMS, vol. 41(4), pages 731-742, August.
    2. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    3. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    4. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    5. William A. Massey, 1985. "Asymptotic Analysis of the Time Dependent M/M/1 Queue," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 305-327, May.
    6. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    7. Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
    8. Armann Ingolfsson & Elvira Akhmetshina & Susan Budge & Yongyue Li & Xudong Wu, 2007. "A Survey and Experimental Comparison of Service-Level-Approximation Methods for Nonstationary M(t)/M/s(t) Queueing Systems with Exhaustive Discipline," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 201-214, May.
    9. Jamol Pender & Young Myoung Ko, 2017. "Approximations for the Queue Length Distributions of Time-Varying Many-Server Queues," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 688-704, November.
    10. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    11. Young Myoung Ko & Natarajan Gautam, 2013. "Critically Loaded Time-Varying Multiserver Queues: Computational Challenges and Approximations," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 285-301, May.
    12. Pender, Jamol, 2016. "Risk measures and their application to staffing nonstationary service systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 113-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    2. Zhang, Xin & Huang, Ning & Sun, Lina & Zheng, Xiangyu & Guo, Ziyue, 2022. "Modeling congestion considering sequential coupling applications: A network-cell-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Ward Whitt, 2018. "A broad view of queueing theory through one issue," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 3-14, June.
    4. Gregor Selinka & Raik Stolletz & Thomas I. Maindl, 2022. "Performance Approximation for Time-Dependent Queues with Generally Distributed Abandonments," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 20-38, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    2. Yongkyu Cho & Young Myoung Ko, 2020. "Stabilizing the virtual response time in single-server processor sharing queues with slowly time-varying arrival rates," Annals of Operations Research, Springer, vol. 293(1), pages 27-55, October.
    3. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    4. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    5. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    6. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    7. Guodong Pang & Ward Whitt, 2012. "The Impact of Dependent Service Times on Large-Scale Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 262-278, April.
    8. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    9. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    10. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    11. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    12. Itai Gurvich & Junfei Huang & Avishai Mandelbaum, 2014. "Excursion-Based Universal Approximations for the Erlang-A Queue in Steady-State," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 325-373, May.
    13. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    14. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    15. Izady, Navid & Worthington, Dave, 2012. "Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 531-540.
    16. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    17. Alexander Zeifman & Yacov Satin & Ivan Kovalev & Rostislav Razumchik & Victor Korolev, 2020. "Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    18. Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
    19. Jerome Niyirora & Jamol Pender, 2016. "Optimal staffing in nonstationary service centers with constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 615-630, December.
    20. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:89:y:2018:i:1:d:10.1007_s11134-018-9581-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.