IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i1p113-126.html
   My bibliography  Save this article

Risk measures and their application to staffing nonstationary service systems

Author

Listed:
  • Pender, Jamol

Abstract

In this paper, we explore the use of static risk measures from the mathematical finance literature to assess the performance of some standard nonstationary queueing systems. To do this we study two important queueing models, namely the infinite server queue and the multi-server queue with abandonment. We derive exact expressions for the value of many standard risk measures for the Mt/M/∞, Mt/G/∞, and Mt/Mt/∞ queueing models. We also derive Gaussian based approximations for the value of risk measures for the Erlang-A queueing model. Unlike more traditional approaches of performance analysis, risk measures offer the ability to satisfy the unique and specific risk preferences or tolerances of service operations managers. We also show how risk measures can be used for staffing nonstationary systems with different risk preferences and assess the impact of these staffing policies via simulation.

Suggested Citation

  • Pender, Jamol, 2016. "Risk measures and their application to staffing nonstationary service systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 113-126.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:1:p:113-126
    DOI: 10.1016/j.ejor.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716301400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerome Niyirora & Jamol Pender, 2016. "Optimal staffing in nonstationary service centers with constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 615-630, December.
    2. Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
    3. Vincent Tsz Fai Chow & Zheng Cui & Daniel Zhuoyu Long, 2022. "Target-Oriented Distributionally Robust Optimization and Its Applications to Surgery Allocation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2058-2072, July.
    4. Eugene Furman & Alex Cressman & Saeha Shin & Alexey Kuznetsov & Fahad Razak & Amol Verma & Adam Diamant, 2021. "Prediction of personal protective equipment use in hospitals during COVID-19," Health Care Management Science, Springer, vol. 24(2), pages 439-453, June.
    5. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:1:p:113-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.