IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122004484.html
   My bibliography  Save this article

Modeling congestion considering sequential coupling applications: A network-cell-based method

Author

Listed:
  • Zhang, Xin
  • Huang, Ning
  • Sun, Lina
  • Zheng, Xiangyu
  • Guo, Ziyue

Abstract

Sequential coupling of applications is the major cause of traffic congestion and low application quality. Modeling traffic congestion under sequential coupling applications is the primary means to explore congestion mechanism, which can further support application design and adjustment to improve application quality. Existing congestion models concentrate more on traffic flow modeling based on network components, with little consideration of the influence of network application and its coupling. This paper proposes a network-cell-based congestion model for describing dynamics of congestion propagation under sequential coupling multi-applications. First, the basic characteristics of network applications are analyzed, and network applications are abstracted into network cells as functional units, which is specifically described from three perspectives: Structure, function and connection. The dynamic process of network can be modeled as intracellular reaction (single application function behavior) and intercellular interaction (coupling behavior of multi-applications). Furthermore, a network-cell-based metric to evaluate application quality is presented, and the implementation algorithm of the model is also given. Numerical simulations are implemented with comparison of typical information flow model to verify the model. Moreover, the proposed model is applied to Chengdu Metro system case to show the applicability. Furthermore, the influence of sequential coupling on congestion is further investigated, and the results show that the larger coupling strength corresponds to less congestion in peak period. This study provides guidance for application design and management to improve application quality of transportation networks.

Suggested Citation

  • Zhang, Xin & Huang, Ning & Sun, Lina & Zheng, Xiangyu & Guo, Ziyue, 2022. "Modeling congestion considering sequential coupling applications: A network-cell-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004484
    DOI: 10.1016/j.physa.2022.127668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004484
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jian & Huang, Ning & Coit, David W. & Felder, Frank A., 2018. "Combined effects of load dynamics and dependence clusters on cascading failures in network systems," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 116-126.
    2. Yin, Rong-Rong & Yuan, Huaili & Wang, Jing & Zhao, Ning & Liu, Lei, 2021. "Modeling and analyzing cascading dynamics of the urban road traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Jincheng Jiang & Nico Dellaert & Tom Van Woensel & Lixin Wu, 2020. "Modelling traffic flows and estimating road travel times in transportation network under dynamic disturbances," Transportation, Springer, vol. 47(6), pages 2951-2980, December.
    4. Meead Saberi & Homayoun Hamedmoghadam & Mudabber Ashfaq & Seyed Amir Hosseini & Ziyuan Gu & Sajjad Shafiei & Divya J. Nair & Vinayak Dixit & Lauren Gardner & S. Travis Waller & Marta C. González, 2020. "A simple contagion process describes spreading of traffic jams in urban networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Shen, Yi & Song, Guohao & Xu, Huangliang & Xie, Yuancheng, 2020. "Model of node traffic recovery behavior and cascading congestion analysis in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    7. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiangyu & Huang, Ning & Bai, Ya-nan & Zhang, Xin, 2023. "A traffic-fractal-element-based congestion model considering the uneven distribution of road traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Wang, Ziqi & Pei, Yulong & Zhang, Jianhua & Dong, Chuntong & Liu, Jing & Zhou, Dongyue, 2024. "Vulnerability analysis of public transit systems from the perspective of the traffic situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    3. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    7. Amitrajeet A. Batabyal & Hamid Beladi, 2022. "Commuting to work in cities: Bus, car, or train?," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(3), pages 599-609, June.
    8. Dui, Hongyan & Chen, Shuanshuan & Wang, Jia, 2021. "Failure-oriented maintenance analysis of nodes and edges in network systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhang, Jianhua & Min, Qinjie & Zhou, Yu & Cheng, Lilai, 2024. "Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    15. Ward Whitt, 2018. "A broad view of queueing theory through one issue," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 3-14, June.
    16. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    17. Haonan Ye & Xiao Luo, 2021. "Cascading Failure Analysis on Shanghai Metro Networks: An Improved Coupled Map Lattices Model Based on Graph Attention Networks," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    18. Yin, Rongrong & Zhang, Kai & Ma, Xuyao & Wang, Yumeng & Li, Linhui, 2023. "Analysis of cascading failures caused by mobile overload attacks in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Marashi, Koosha & Sarvestani, Sahra Sedigh & Hurson, Ali R., 2021. "Identification of interdependencies and prediction of fault propagation for cyber–physical systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.