IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v102y2022i3d10.1007_s11134-022-09850-y.html
   My bibliography  Save this article

Uniform stability of some large-scale parallel server networks

Author

Listed:
  • Hassan Hmedi

    (The University of Texas at Austin)

  • Ari Arapostathis

    (The University of Texas at Austin)

  • Guodong Pang

    (Rice University)

Abstract

In this paper we study the uniform stability properties of two classes of parallel server networks with multiple classes of jobs and multiple server pools of a tree topology. These include a class of networks with a single nonleaf server pool, such as the ‘N’ and ‘M’ models, and networks of any tree topology with class-dependent service rates. We show that with $$\sqrt{n}$$ n safety staffing, and no abandonment, in the Halfin–Whitt regime, the diffusion-scaled controlled queueing processes are exponentially ergodic and their invariant probability distributions are tight, uniformly over all stationary Markov controls. We use a unified approach in which the same Lyapunov function is used in the study of the prelimit and diffusion limit. A parameter called the spare capacity (safety staffing) of the network plays a central role in characterizing the stability results: the parameter being positive is necessary and sufficient that the limiting diffusion is uniformly exponentially ergodic over all stationary Markov controls. We introduce the concept of “system-wide work conserving policies," which are defined as policies that minimize the number of idle servers at all times. This is stronger than the so-called joint work conservation. We show that, provided the spare capacity parameter is positive, the diffusion-scaled processes are geometrically ergodic and the invariant distributions are tight, uniformly over all “system-wide work conserving policies." In addition, when the spare capacity is negative we show that the diffusion-scaled processes are transient under any stationary Markov control, and when it is zero, they cannot be positive recurrent.

Suggested Citation

  • Hassan Hmedi & Ari Arapostathis & Guodong Pang, 2022. "Uniform stability of some large-scale parallel server networks," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 509-552, December.
  • Handle: RePEc:spr:queues:v:102:y:2022:i:3:d:10.1007_s11134-022-09850-y
    DOI: 10.1007/s11134-022-09850-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09850-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09850-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heng-Qing Ye & David D. Yao, 2016. "Diffusion Limit of Fair Resource Control—Stationarity and Interchange of Limits," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1161-1207, November.
    2. Ari Arapostathis & Guodong Pang, 2018. "Infinite-Horizon Average Optimality of the N-Network in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 838-866, August.
    3. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    4. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    5. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    6. Ward Whitt, 1992. "Understanding the Efficiency of Multi-Server Service Systems," Management Science, INFORMS, vol. 38(5), pages 708-723, May.
    7. Itai Gurvich, 2014. "Validity of Heavy-Traffic Steady-State Approximations in Multiclass Queueing Networks: The Case of Queue-Ratio Disciplines," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 121-162, February.
    8. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    9. Sem Borst & Avi Mandelbaum & Martin I. Reiman, 2004. "Dimensioning Large Call Centers," Operations Research, INFORMS, vol. 52(1), pages 17-34, February.
    10. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    11. Arapostathis, Ari & Pang, Guodong, 2019. "Infinite horizon asymptotic average optimality for large-scale parallel server networks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 283-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ari Arapostathis & Hassan Hmedi & Guodong Pang, 2021. "On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 772-796, May.
    2. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    3. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    4. Dongyuan Zhan & Amy R. Ward, 2014. "Threshold Routing to Trade Off Waiting and Call Resolution in Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 220-237, May.
    5. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    6. Guodong Pang & Ward Whitt, 2009. "Service Interruptions in Large-Scale Service Systems," Management Science, INFORMS, vol. 55(9), pages 1499-1512, September.
    7. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    8. Avishai Mandelbaum & Sergey Zeltyn, 2009. "Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers," Operations Research, INFORMS, vol. 57(5), pages 1189-1205, October.
    9. A. J. E. M. Janssen & J. S. H. van Leeuwaarden & Bert Zwart, 2011. "Refining Square-Root Safety Staffing by Expanding Erlang C," Operations Research, INFORMS, vol. 59(6), pages 1512-1522, December.
    10. Josh Reed & Bo Zhang, 2017. "Managing capacity and inventory jointly for multi-server make-to-stock queues," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 61-94, June.
    11. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    12. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    13. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    14. Heemskerk, M. & Mandjes, M. & Mathijsen, B., 2022. "Staffing for many-server systems facing non-standard arrival processes," European Journal of Operational Research, Elsevier, vol. 296(3), pages 900-913.
    15. Zhong, Zhiheng & Cao, Ping, 2023. "Balanced routing with partial information in a distributed parallel many-server queueing system," European Journal of Operational Research, Elsevier, vol. 304(2), pages 618-633.
    16. Tolga Tezcan & J. G. Dai, 2010. "Dynamic Control of N -Systems with Many Servers: Asymptotic Optimality of a Static Priority Policy in Heavy Traffic," Operations Research, INFORMS, vol. 58(1), pages 94-110, February.
    17. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    18. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    19. Bo Zhang & Johan S. H. van Leeuwaarden & Bert Zwart, 2012. "Staffing Call Centers with Impatient Customers: Refinements to Many-Server Asymptotics," Operations Research, INFORMS, vol. 60(2), pages 461-474, April.
    20. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:102:y:2022:i:3:d:10.1007_s11134-022-09850-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.